Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation


There remains a pressing challenge in the fabrication of superior photocatalysts for light-driven water oxidation. Here, we designed and fabricated heterostructured TiO2/Fe2TiO5 hollow microspheres with single-, double-, closed-double-, triple-, and core–shell structures and different Fe/Ti molar ratios using a facile sequential templating approach. The closed-double-shelled TiO2/Fe2TiO5 hollow microspheres with 35% Fe exhibited the highest oxygen evolution reaction rate up to 375 μmol·g−1·h−1 and good stability for 5 h. The high performance can be attributed to the closed-double shell, which had more reactive sites and greater light-harvesting ability, self-supported thin shells with short charge-transfer paths, and a favorable staggered band alignment between the TiO2 and Fe2TiO5.

This is a preview of subscription content, access via your institution.


  1. [1]

    Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  2. [2]

    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  3. [3]

    Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.

    Article  Google Scholar 

  4. [4]

    Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.

    Article  Google Scholar 

  5. [5]

    Khaselev, O.; Turner, J. A. A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting. Science 1998, 280, 425–427.

    Article  Google Scholar 

  6. [6]

    Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.

    Article  Google Scholar 

  7. [7]

    Liu, Q.; Wu, F. L.; Cao, F. R.; Chen, L.; Xie, X. J.; Wang, W. C.; Tian, W.; Li, L. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 2015, 8, 3524–3534.

    Article  Google Scholar 

  8. [8]

    Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

    Article  Google Scholar 

  9. [9]

    Lee, S.; Lee, K.; Kim, W. D.; Lee, S.; Shin, D. J.; Lee, D. C. Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water. J. Phys. Chem. C 2014, 118, 23627–23634.

    Article  Google Scholar 

  10. [10]

    Bates, M. K.; Jia, Q. Y.; Ramaswamy, N.; Allen, R. J.; Mukerjee, S. Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction. J. Phys. Chem. C 2015, 119, 5467–5477.

    Article  Google Scholar 

  11. [11]

    Yamada, Y.; Yano, K.; Xu, Q. A.; Fukuzumi, S. Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis. J. Phys. Chem. C 2010, 114, 16456–16462.

    Article  Google Scholar 

  12. [12]

    Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  Google Scholar 

  13. [13]

    Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

    Article  Google Scholar 

  14. [14]

    Lin, H. F.; Li, Y. Y.; Li, H. Y.; Wang, X. Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 2017, 10, 1377–1392.

    Article  Google Scholar 

  15. [15]

    Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. H.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 2016, 9, 2284–2293.

    Article  Google Scholar 

  16. [16]

    Ma, S. S. K.; Maeda, K.; Abe, R.; Domen, K. Visible-lightdriven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energy Environ. Sci. 2012, 5, 8390–8397.

    Article  Google Scholar 

  17. [17]

    Wang, J. R.; Osterloh, F. E. Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J. Mater. Chem. A 2014, 2, 9405–9411.

    Article  Google Scholar 

  18. [18]

    Frame, F. A.; Townsend, T. K.; Chamousis, R. L.; Sabio, E. M.; Dittrich, T.; Browning, N. D.; Osterloh, F. E. Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J. Am. Chem. Soc. 2011, 133, 7264–7267.

    Article  Google Scholar 

  19. [19]

    Zhu, T.; Wu, H. B.; Wang, Y. B.; Xu, R.; Lou, X. W. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2012, 2, 1497–1502.

    Article  Google Scholar 

  20. [20]

    Hamann, T. W. Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 2012, 41, 7830–7834.

    Article  Google Scholar 

  21. [21]

    Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 2013, 4, 1624–1633.

    Article  Google Scholar 

  22. [22]

    Wang, Y. B.; Wang, Y. S.; Jiang, R. R.; Xu, R. Cobalt phosphate–ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation. Ind. Eng. Chem. Res. 2012, 51, 9945–9951.

    Article  Google Scholar 

  23. [23]

    Xie, Y. P.; Liu, G.; Yin, L. C.; Cheng, H. M. Crystal facetdependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem. 2012, 22, 6746–6751.

    Article  Google Scholar 

  24. [24]

    Qi, J.; Zhao, K.; Li, G. D.; Gao, Y.; Zhao, H. J.; Yu, R. B.; Tang, Z. Y. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale 2014, 6, 4072–4077.

    Article  Google Scholar 

  25. [25]

    Zhu, J. X.; Yin, Z. Y.; Yang, D.; Sun, T.; Yu, H.; Hoster, H. E.; Hng, H. H.; Zhang, H.; Yan, Q. Y. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 2013, 6, 987–993.

    Article  Google Scholar 

  26. [26]

    Yang, J. X.; Wang, D. G.; Zhou, X.; Li, C. A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem.—Eur. J. 2013, 19, 1320–1326.

    Article  Google Scholar 

  27. [27]

    Wang, D. A.; Hisatomi, T.; Takata, T.; Pan, C. S.; Katayama, M.; Kubota, J.; Domen, K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew. Chem., Int. Ed. 2013, 52, 11252–11256.

    Article  Google Scholar 

  28. [28]

    Deng, J. J.; Lv, X. X.; Liu, J. Y.; Zhang, H.; Nie, K. Q.; Hong, C. H.; Wang, J. O.; Sun, X. H.; Zhong, J.; Lee, S. T. Thin-layer Fe2TiO5 on hematite for efficient solar water oxidation. ACS Nano 2015, 9, 5348–5356.

    Article  Google Scholar 

  29. [29]

    Bassi, P. S.; Chiam, S. Y.; Gurudayal; Barber, J.; Wong, L. H. Hydrothermal grown nanoporous iron based titanate, Fe2TiO5 for light driven water splitting. ACS Appl. Mater. Interfaces 2014, 6, 22490–22495.

    Article  Google Scholar 

  30. [30]

    Dong, Z. H.; Lai, X. Y.; Halpert, J. E.; Yang, N. L.; Yi, L. X.; Zhai, J.; Wang, D.; Tang, Z. Y.; Jiang, L. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 2012, 24, 1046–1049.

    Article  Google Scholar 

  31. [31]

    Dong, Z. H.; Ren, H.; Hessel, C. M.; Wang, J. Y.; Yu, R. B.; Jin, Q.; Yang, M.; Hu, Z. D.; Chen, Y. F.; Tang, Z. Y. et al. Quintuple-shelled SnO2 hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 2014, 26, 905–909.

    Article  Google Scholar 

  32. [32]

    Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

    Article  Google Scholar 

  33. [33]

    Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7423–7426.

    Article  Google Scholar 

  34. [34]

    Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J. A.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 50, 2738–2741.

    Article  Google Scholar 

  35. [35]

    Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core-shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.

    Article  Google Scholar 

  36. [36]

    Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417–6420.

    Article  Google Scholar 

  37. [37]

    Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 7, 632–637.

    Article  Google Scholar 

  38. [38]

    Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, R. B.; Qi, J.; Mao, D.; Zhao, H. J.; Wang, D. PH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv. Sci. 2014, 1, 1400011.

    Article  Google Scholar 

  39. [39]

    Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multishelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.

    Article  Google Scholar 

  40. [40]

    Wang, J. Y.; Tang, H. J.; Wang, H.; Yu, R. B.; Wang, D. Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Mater. Chem. Front. 2017, 1, 414–430.

    Article  Google Scholar 

  41. [41]

    Li, H.; Ma, H. R.; Yang, M.; Wang, B.; Shao, H.; Wang, L.; Yu, R. B.; Wang, D. Highly controlled synthesis of multishelled NiO hollow microspheres for enhanced lithium storage properties. Mater. Res. Bull. 2017, 87, 224–229.

    Article  Google Scholar 

  42. [42]

    Zhang, J.; Ren, H.; Wang, J. Y.; Qi, J.; Yu, R. B.; Wang, D.; Liu, Y. L. Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J. Mater. Chem. A 2016, 4, 17673–17677.

    Article  Google Scholar 

  43. [43]

    Chen, M. J.; Wang, J. Y.; Tang, H. J.; Yang, Y.; Wang, B.; Zhao, H. J.; Wang, D. Synthesis of multi-shelled MnO2 hollow microspheres via an anion-adsorption process of hydrothermal intensification. Inorg. Chem. Front. 2016, 3, 1065–1070.

    Article  Google Scholar 

  44. [44]

    Wang, F.; Wang, J. Y.; Ren, H.; Tang, H. J.; Yu, R. B.; Wang, D. Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg. Chem. Front. 2016, 3, 365–369.

    Article  Google Scholar 

  45. [45]

    Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, 14, 6679–6684.

    Article  Google Scholar 

  46. [46]

    Liu, Q. H.; He, J. F.; Yao, T.; Sun, Z. H.; Cheng, W. R.; He, S.; Xie, Y.; Peng, Y. H.; Cheng, H.; Sun, Y. F. et al. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 2014, 5, 5122.

    Article  Google Scholar 

  47. [47]

    Fink, Y.; Winn, J. N.; Fan, S. H.; Chen, C. P.; Michel, J.; Joannopoulos, J. D.; Thomas, E. L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682.

    Article  Google Scholar 

  48. [48]

    Dotan, H.; Kfir, O.; Sharlin, E.; Blank, O.; Gross, M.; Dumchin, I.; Ankonina, G.; Rothschild, A. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158–164.

    Article  Google Scholar 

Download references


This project was kindly supported by the National Science Fund for Distinguished Young Scholars (No. 21325105), National Natural Science Foundation of China (Nos. 21590795, 51572261, 51472244, 51672274, 51661165013, 51372245, and 51672276), National Key Projects for Fundamental Research and Development of China (No. 2016YFB0600903), CAS Interdisciplinary Innovation Team, and Youth Innovation Promotion Association of CAS (No. 2017070). Muhammad Waqas thank the Chinese Academy of Sciences (CAS)-the World Academy of Sciences (TWAS) President’s Fellowship Programme and CAS-TWAS Postgraduate Fellowship for providing living allowance.

Author information



Corresponding authors

Correspondence to Dan Mao or Bao Wang or Dan Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Wei, Y., Mao, D. et al. Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation. Nano Res. 10, 3920–3928 (2017).

Download citation


  • multi-shelled hollow microsphere
  • titanium oxide
  • pseudo-brookite
  • heterostructure
  • photocatalytic water oxidation