Tribotronic transistor sensor for enhanced hydrogen detection


Hydrogen detection with a high sensitivity is necessary for preventing potential explosions and fire. In this study, a novel ZnO tribotronic transistor is developed by coupling a ZnO field effect transistor (FET) and triboelectric nanogenerator in free-standing mode and is used as a sensor for hydrogen detection at room temperature. Tribotronic modulated performances of the hydrogen sensor are demonstrated by investigating its output characteristics at different sliding distances and hydrogen concentrations. By applying an external mechanical force to the device for sliding electrification, the detection sensitivity of the ZnO tribotronic transistor sensor is improved, with a significant enhancement achieved in output current by 62 times at 500 ppm hydrogen and 1 V bias voltage. This study demonstrates an extension of the applications of emerging tribotronics for gas detection and a prospective approach to improve the performance of the hydrogen sensor via human-interfacing.

This is a preview of subscription content, access via your institution.


  1. [1]

    Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors–A review. Sens. Actuator B 2011, 157, 329–352.

    Article  Google Scholar 

  2. [2]

    Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.

    Article  Google Scholar 

  3. [3]

    Korotcenkov, G.; Han, S. D.; Stetter, J. R. Review of electrochemical hydrogen sensors. Chem. Rev. 2009, 109, 1402–1433.

    Article  Google Scholar 

  4. [4]

    Pan, X. F.; Liu, X.; Bermak, A.; Fan, Z. Y. Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors. ACS Nano 2013, 7, 9318–9324.

    Article  Google Scholar 

  5. [5]

    Mubeen, S.; Moskovits, M. Gate-tunable surface processes on a single-nanowire field-effect transistor. Adv. Mater. 2011, 23, 2306–2312.

    Article  Google Scholar 

  6. [6]

    Li, X. W.; Liu, Y.; Hemminger, J. C.; Penner, R. M. Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection. ACS Nano 2015, 9, 3215–3225.

    Article  Google Scholar 

  7. [7]

    Han, C. H.; Hong, D. W.; Kim, I. J.; Gwak, J.; Han, S. D.; Singh, K. C. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sens. Actuator B 2007, 128, 320–325.

    Article  Google Scholar 

  8. [8]

    Sil, D.; Gilroy, K. D.; Niaux, A.; Boulesbaa, A.; Neretina, S.; Borguet, E. Seeing is believing: Hot electron based gold nanoplasmonic optical hydrogen sensor. ACS Nano 2014, 8, 7755–7762.

    Article  Google Scholar 

  9. [9]

    Nasir, M. E.; Dickson, W.; Wurtz, G. A.; Wardley, W. P.; Zayats, A. V. Hydrogen detected by the naked eye: Optical hydrogen gas sensors based on core/shell plasmonicnanorod metamaterials. Adv. Mater. 2014, 26, 3532–3537.

    Article  Google Scholar 

  10. [10]

    Feng, P.; Shao, F.; Shi, Y.; Wan, Q. Gas sensors based on semiconducting nanowire field-effect transistors. Sensors 2014, 14, 17406–17429.

    Article  Google Scholar 

  11. [11]

    Drobek, M.; Kim, J. H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S. S. MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces 2016, 8, 8323–8328.

    Article  Google Scholar 

  12. [12]

    Zan, H. W.; Li, C. H.; Yeh, C. C.; Dai, M. Z.; Meng, H. F.; Tsai, C. C. Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 2011, 98, 253503.

    Article  Google Scholar 

  13. [13]

    Rai, P.; Kim, Y. S.; Song, H. M.; Song, M. K.; Yu, Y. T. The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuator B 2012, 165, 133–142.

    Article  Google Scholar 

  14. [14]

    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  Google Scholar 

  15. [15]

    Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

    Article  Google Scholar 

  16. [16]

    Tang, W.; Zhang, C.; Han, C. B.; Wang, Z. L. Enhancing output power of cylindrical triboelectric nanogenerators by segmentation design and multilayer integration. Adv. Funct. Mater. 2014, 24, 6684–6690.

    Article  Google Scholar 

  17. [17]

    Zhang, C.; Zhou, T.; Tang, W.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301798.

    Article  Google Scholar 

  18. [18]

    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  Google Scholar 

  19. [19]

    Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.

    Article  Google Scholar 

  20. [20]

    Luo, J. J.; Tang, W.; Fan, F. R.; Liu, C. F.; Pang, Y. K.; Cao, G. X.; Wang, Z. L. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 2016, 10, 8078–8086.

    Article  Google Scholar 

  21. [21]

    Zhou, T.; Zhang, C.; Han, C. B.; Fan, F. R.; Tang, W.; Wang, Z. L. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 2014, 6, 14695–14701.

    Article  Google Scholar 

  22. [22]

    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

    Article  Google Scholar 

  23. [23]

    Zhang, C.; Tang, W.; Pang, Y. K.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.

    Article  Google Scholar 

  24. [24]

    Han, C. B.; Zhang, C.; Tian, J. J.; Li, X. H.; Zhang, L. M.; Li, Z.; Wang, Z. L. Triboelectrification induced UV emission from plasmon discharge. Nano Res. 2015, 8, 219–226.

    Article  Google Scholar 

  25. [25]

    Chen, X. Y.; Iwamoto, M.; Shi, Z. M.; Zhang, L. M.; Wang, Z. L. Self-powered trace memorization by conjunction of contact-electrification and ferroelectricity. Adv. Funct. Mater. 2015, 25, 739–747.

    Article  Google Scholar 

  26. [26]

    Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561.

    Article  Google Scholar 

  27. [27]

    Zhang, C.; Tang, W.; Zhang, L. M.; Han, C. B.; Wang, Z. L. Contact electrification field-effect transistor. ACS Nano 2014, 8, 8702–8709.

    Article  Google Scholar 

  28. [28]

    Zhang, C.; Wang, Z. L. Tribotronics–A new field by coupling triboelectricity and semiconductor. Nano Today 2016, 11, 521–536.

    Article  Google Scholar 

  29. [29]

    Zhang, C.; Zhang, L. M.; Tang, W.; Han, C. B.; Wang, Z. L. Tribotroniclogic circuits and basic operations. Adv. Mater. 2015, 27, 3533–3540.

    Article  Google Scholar 

  30. [30]

    Zhang, C.; Zhang, Z. H.; Yang, X.; Zhou, T.; Han, C. B.; Wang, Z. L. Tribotronicphototransistor for enhanced photodetection and hybrid energy harvesting. Adv. Funct. Mater. 2016, 26, 2554–2560.

    Article  Google Scholar 

  31. [31]

    Zhou, T.; Yang, Z. W.; Pang, Y. K.; Xu, L.; Zhang, C.; Wang, Z. L. Tribotronic tuning diode for active analog signal modulation. ACS Nano 2017, 11, 882–888.

    Article  Google Scholar 

  32. [32]

    Zhang, C.; Li, J.; Han, C. B.; Zhang, L. M.; Chen, X. Y.; Wang, L. D.; Dong, G. F.; Wang, Z. L. Organic tribotronic transistor for contact-electrification-gated light-emitting diode. Adv. Funct. Mater. 2015, 25, 5625–5632.

    Article  Google Scholar 

  33. [33]

    Li, J.; Zhang, C.; Duan, L.; Zhang, L. M.; Wang, L. D.; Dong, G. F.; Wang, Z. L. Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system. Adv. Mater. 2016, 28, 106–110.

    Article  Google Scholar 

  34. [34]

    Pang, Y. K.; Xue, F.; Wang, L. F.; Chen, J.; Luo, J. J.; Jiang, T.; Zhang, C.; Wang, Z. L. Tribotronic enhanced photoresponsivity of a MoS2 phototransistor. Adv. Sci. 2016, 3, 1500419.

    Article  Google Scholar 

  35. [35]

    Xue, F.; Chen, L. B.; Wang, L. F.; Pang, Y. K.; Chen, J.; Zhang, C.; Wang, Z. L. MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104–2109.

    Article  Google Scholar 

  36. [36]

    Khan, U.; Kim, T. H.; Ryu, H.; Seung, W.; Kim, S. W. Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 2017, 29, 1603544.

    Article  Google Scholar 

  37. [37]

    Wu, J. M.; Lin, Y. H.; Yang, B. Z. Force-pad made from contact-electrification poly (ethylene oxide)/InSb field-effect transistor. Nano Energy 2016, 22, 468–474.

    Article  Google Scholar 

  38. [38]

    Pang, Y. K.; Li, J.; Zhou, T.; Yang, Z. W.; Luo, J. J.; Zhang, L. M.; Dong, G. F.; Zhang, C.; Wang, Z. L. Flexible transparent tribotronic transistor for active modulation of conventional electronics. Nano Energy 2017, 31, 533–540.

    Article  Google Scholar 

  39. [39]

    Yang, Z. W.; Pang, Y. K.; Zhang, L. M.; Lu, C. X.; Chen, J.; Zhou, T.; Zhang, C.; Wang, Z. L. Tribotronic transistor array as an active tactile sensing system. ACS Nano 2016, 10, 10912–10920.

    Article  Google Scholar 

Download references


The authors thank the support of National Natural Science Foundation of China (No. 51475099), Beijing Natural Science Foundation (No. 4163077), Beijing Nova Program (No. Z171100001117054), the Youth Innovation Promotion Association, CAS (No. 2014033), the “thousands talents” program for the pioneer researcher and his innovation team, China, and National Key Research and Development Program of China (No. 2016YFA0202704).

Author information



Corresponding authors

Correspondence to Chi Zhang or Zhong Lin Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Chen, L., Hu, G. et al. Tribotronic transistor sensor for enhanced hydrogen detection. Nano Res. 10, 3857–3864 (2017).

Download citation


  • tribotronics
  • triboelectric nanogenerator
  • ZnO
  • hydrogen detection
  • sensitivity