Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution


A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs). CMO QDs with average size of 2.0, 3.9, and 5.4 nm were selectively obtained at 80, 90, and 105 °C, respectively. The CMO QDs supported on carbon nanotubes (CNTs) were employed as catalysts for the oxygen reduction/evolution reaction (ORR/OER) in alkaline solution to investigate their size-performance relationship. The results revealed that the amount of surface-adsorbed oxygen and the band gap energy, which affect the charge transfer in the oxygen electrocatalysis processes, strongly depend on the size of the CMO QDs. The CMO-3.9/CNT hybrid, consisting of CNT-supported CMO QDs of 3.9 nm size, possesses a moderate amount of surface-adsorbed oxygen, a lower band gap energy, and a larger charge carrier concentration, and exhibits the highest electrocatalytic activity among the hybrid materials investigated. Moreover, the CMO-3.9/CNT hybrid displays ORR and OER performances similar to those of the benchmark Pt/C and RuO2 catalysts, respectively, due to the strong carbon-oxide interactions and the high dispersion of CoMn2O4 QDs on the carbon substrate; this reveals the huge potential of the CMO-3.9/CNT hybrid as a bifunctional OER/ORR electrocatalyst. The present results highlight the importance of controlling the size of metal oxide nanodots in the design of active oxygen electrocatalysts based on spinel-type, nonprecious metal oxides.

This is a preview of subscription content, log in to check access.


  1. [1]

    Tahir, M.; Mahmood, N.; Zhang, X. X.; Mahmood, T.; Butt, F. K.; Aslam, I.; Tanveer, M.; Idrees, F.; Khalid, S.; Shakir, I. et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015, 8, 3725–3736.

    Article  Google Scholar 

  2. [2]

    Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  Google Scholar 

  3. [3]

    Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 4, 2172–2192.

    Article  Google Scholar 

  4. [4]

    Toh, R. J.; Eng, A. Y. S.; Sofer, Z.; Sedmidubsky, D.; Pumera, M. Ternary transition metal oxide nanoparticles with spinel structure for the oxygen reduction reaction. ChemElectroChem 2015, 2, 982–987.

    Article  Google Scholar 

  5. [5]

    Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel onedimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945–1954.

    Article  Google Scholar 

  6. [6]

    Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207–213.

    Article  Google Scholar 

  7. [7]

    Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

    Article  Google Scholar 

  8. [8]

    Zhu, H. Y.; Zhang, S.; Huang, Y. X.; Wu, L. H.; Sun, S. H. Monodisperse MxFe3–x O4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett. 2013, 13, 2947–2951.

    Article  Google Scholar 

  9. [9]

    Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

    Article  Google Scholar 

  10. [10]

    Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  11. [11]

    Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

    Article  Google Scholar 

  12. [12]

    Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D.; Wang, L. M. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. Chem. Commun. 2012, 48, 7598–7600.

    Article  Google Scholar 

  13. [13]

    Cao, X. C.; Wu, J.; Jin, C.; Tian, J. H.; Strasser, P.; Yang, R. Z. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 2015, 5, 4890−4896.

    Article  Google Scholar 

  14. [14]

    Fei, H. L.; Ye, R. Q.; Ye, G. L.; Gong, Y. J.; Peng, Z. W.; Fan, X. J.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 2014, 8, 10837–10843.

    Article  Google Scholar 

  15. [15]

    Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.

    Article  Google Scholar 

  16. [16]

    Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288–8297.

    Article  Google Scholar 

  17. [17]

    Tompsett, D. A.; Parker, S. C.; Islam, M. S. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance. J. Am. Chem. Soc. 2014, 136, 1418–1426.

    Article  Google Scholar 

  18. [18]

    Tompsett, D. A.; Islam, M. S. Surfaces of rutile MnO2 are electronically conducting, whereas the bulk material is insulating. J. Phys. Chem. C 2014, 118, 25009–25015.

    Article  Google Scholar 

  19. [19]

    Alivisators, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  Google Scholar 

  20. [20]

    Lee, K. E.; Kim, J. E.; Maiti, U. N.; Lim, J.; Hwang, J. O.; Shim, J.; Oh, J. J.; Yun, T.; Kim, S. O. Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis. ACS Nano 2014, 8, 9073–9080.

    Article  Google Scholar 

  21. [21]

    Lim, W. P.; Wong, C. T.; Ang, S. L.; Low, H. Y.; Chin, W. S. Phase-selective synthesis of copper sulfide nanocrystals. Chem. Mater. 2006, 18, 6170–6177.

    Article  Google Scholar 

  22. [22]

    Zhai, X. M.; Yang, W.; Li, M. Y.; Lu, G. Q.; Liu, J. P.; Zhang, X. L. Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon 2013, 65, 277–286.

    Article  Google Scholar 

  23. [23]

    Chowdhury, A. D.; Agnihotri, N.; Sen, P.; De, A. Conducting CoMn2O4-PEDOT nanocomposites as catalyst in oxygen reduction reaction. Electrochim. Acta 2014, 118, 81–87.

    Article  Google Scholar 

  24. [24]

    Ma, L.; Zhou, H.; Xin, S. L.; Xiao, C. H.; Li, F.; Ding, S. J. Characterization of local electrocatalytical activity of nanosheet-structured ZnCo2O4/carbon nanotubes composite for oxygen reduction reaction with scanning electrochemical microscopy. Electrochim. Acta 2015, 178, 767–777.

    Article  Google Scholar 

  25. [25]

    Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Rechargeable room-temperature Na-CO2 batteries. Angew. Chem., Int. Ed. 2016, 55, 6482–6486.

    Article  Google Scholar 

  26. [26]

    Liang, Y. Y; Wang, H. L; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Article  Google Scholar 

  27. [27]

    Du, J.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene. Inorg. Chem. 2015, 54, 5467–5474.

    Article  Google Scholar 

  28. [28]

    Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  29. [29]

    Casula, M. F.; Jun, Y. W.; Zaziski, D. J.; Chan, E. M.; Corrias, A.; Alivisatos, A. P. The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. J. Am. Chem. Soc. 2006, 128, 1675–1682.

    Article  Google Scholar 

  30. [30]

    Yu, T.; Moon, J.; Park, J.; Park, Y. I.; Na, H. B.; Kim, B. H.; Song, I. C.; Moon, W. K.; Hyeon, T. Various-shaped uniform Mn3O4 nanocrystals synthesized at low temperature in air atmosphere. Chem. Mater. 2009, 21, 2272–2279.

    Article  Google Scholar 

  31. [31]

    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  Google Scholar 

  32. [32]

    Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.

    Article  Google Scholar 

  33. [33]

    Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, Ö.; Svedlindh, P.; Haase, M.; Weller, H. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 2003, 125, 9090–9101.

    Article  Google Scholar 

  34. [34]

    Fu, G. T.; Liu, Z. Y.; Zhang, J. F.; Wu, J. Y.; Xu, L.; Sun, D. M.; Zhang, J. B.; Tang, Y. W.; Chen, P. Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Res. 2016, 9, 2110–2122.

    Article  Google Scholar 

  35. [35]

    Gouadec, G.; Colomban, P. Raman spectroscopy of nanostructures and nanosized materials J. Raman Spectrosc. 2007, 38, 598–603.

    Article  Google Scholar 

  36. [36]

    Rolo, A. G.; Vasilevskiy, M. I. Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nanocrystals. J. Raman Spectrosc. 2007, 38, 618–633.

    Article  Google Scholar 

  37. [37]

    Liang, Y. Y.; Wang, H. L; Zhou, J. G; Li, Y. G; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganesecobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

    Article  Google Scholar 

  38. [38]

    Feng, J.; Liang, Y. Y.; Wang, H. L.; Li, Y. G.; Zhang, B.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res. 2012, 5, 718–725.

    Article  Google Scholar 

  39. [39]

    Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

    Article  Google Scholar 

  40. [40]

    Fu, Y.; Tian, C. G.; Liu, F. Y.; Wang, L.; Yan, H. J.; Yang, B. An effective poly(p-phenylenevinylene) polymer adhesion route toward three-dimensional nitrogen-doped carbon nanotube/reduced graphene oxide composite for direct electrocatalytic oxygen reduction. Nano Res. 2016, 9, 3364–3376.

    Article  Google Scholar 

  41. [41]

    Lei, K. X.; Han, X. P.; Hu, Y. X; Liu, X.; Cong, L.; Cheng, F. Y.; Chen, J. Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chem. Commun. 2015, 51, 11599–11602.

    Article  Google Scholar 

  42. [42]

    Huang, D. K.; Luo, Y. P.; Li, S. H.; Zhang, B. Y.; Shen, Y.; Wang, M. K. Active catalysts based on cobalt oxide@cobalt/ N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 2014, 7, 1054–1064.

    Article  Google Scholar 

  43. [43]

    Zhao, A. Q.; Masa, J.; Xia, W.; Maljusch, A.; Willinger, M. G.; Clavel, G.; Xie, K. P.; Schlögl, R.; Schuhmann, W.; Muhler, M. Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J. Am. Chem. Soc. 2014, 136, 7551–7554.

    Article  Google Scholar 

  44. [44]

    Liu, Y. S.; Li, J.; Li, W. Z.; Li, Y. M.; Chen, Q. Y.; Zhan, F. Q. Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. J. Power Sources 2015, 299, 492–500.

    Article  Google Scholar 

  45. [45]

    Cao, X. C.; Jin, C.; Lu, F. L.; Yang, Z. R.; Shen, M.; Yang, R. Z. Electrochemical properties of MnCo2O4 spinel bifunctional catalyst for oxygen reduction and evolution reaction. J. Electrochem. Soc. 2014, 161, H296–H300.

    Article  Google Scholar 

  46. [46]

    Guo, W. H.; Ma, X. X.; Zhang, X. L.; Zhang, Y. Q.; Yu, D. L.; He, X. Q. Spinel CoMn2O4 nanoparticles supported on a nitrogen and phosphorus dual doped graphene aerogel as efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 2016, 6, 96436–96444.

    Article  Google Scholar 

  47. [47]

    Liu, Y. L.; Wang, Y. X.; Xu, X. Y.; Sun, P. C.; Chen, T. H. Facile one-step room-temperature synthesis of Mn-based spinel nanoparticles for electro-catalytic oxygen reduction. RSC Adv. 2014, 4, 4727–4731.

    Article  Google Scholar 

  48. [48]

    Peng, S. J.; Liang, Y. L.; Cheng, F. Y.; Liang, J. Sizecontrolled chalcopyrite CuInS2 nanocrystals: One-pot synthesis and optical characterization. Sci. China Chem. 2012, 55, 1236–1241.

    Article  Google Scholar 

  49. [49]

    Ganesan, P.; Prabu, M.; Sanetuntikul, J.; Shanmugam, S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 2015, 5, 3625–3637.

    Article  Google Scholar 

  50. [50]

    Arbi, N.; Ben Assaker, I.; Gannouni, M.; Kriaa, A.; Chtourou, R. Experimental investigation of the effect of Zn/S molar ratios on the physical and electrochemical properties of ZnS thin films. Mater. Sci. Semicond. Process. 2015, 40, 873–878.

    Article  Google Scholar 

  51. [51]

    Yu, X. L.; Du, R. F.; Li, B. Y.; Zhang, Y. H.; Liu, H. J.; Qu, J. H.; An, X. Q. Biomolecule-assisted self-assembly of CdS/MoS2/graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl. Catal. B: Environ. 2016, 182, 504–512.

    Article  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0202500 and 2016YFB0101201), the National Natural Science Foundation of China (Nos. 21322101 and 21231005) and 111 Project (Nos. B12015 and IRT13R30).

Author information



Corresponding author

Correspondence to Fangyi Cheng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Lei, K., Sun, W. et al. Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution. Nano Res. 10, 3836–3847 (2017).

Download citation


  • size effect
  • spinel oxide
  • quantum dots
  • electrocatalysis