Nanoscale perspective: Materials designs and understandings in lithium metal anodes

Abstract

Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies on nanoscale Li nucleation/deposition. Finally, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  2. [2]

    Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  Google Scholar 

  3. [3]

    Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  Google Scholar 

  4. [4]

    Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  Google Scholar 

  5. [5]

    Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

    Article  Google Scholar 

  6. [6]

    Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 2016, 26, 7094–7102.

    Article  Google Scholar 

  7. [7]

    Liu, B.; Xu, W.; Yan, P. F.; Sun, X. L.; Bowden, M. E.; Read, J.; Qian, J. F.; Mei, D. H.; Wang, C. M.; Zhang, J. G. Enhanced cycling stability of rechargeable Li–O2 batteries using high-concentration electrolytes. Adv. Funct. Mater. 2016, 26, 605–613.

    Article  Google Scholar 

  8. [8]

    Cao, R. G.; Chen, J. Z.; Han, K. S.; Xu, W.; Mei, D. H.; Bhattacharya, P.; Engelhard, M. H.; Mueller, K. T.; Liu, J.; Zhang, J.-G. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 3059–3066.

    Article  Google Scholar 

  9. [9]

    Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 1994, 69, 173–183.

    Article  Google Scholar 

  10. [10]

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

    Article  Google Scholar 

  11. [11]

    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  12. [12]

    Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

    Article  Google Scholar 

  13. [13]

    Zhang, R.; Li, N.-W.; Cheng, X.-B.; Yin, Y.-X.; Zhang, Q.; Guo, Y.-G. Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 2017, 4, 1600445.

    Article  Google Scholar 

  14. [14]

    Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

    Article  Google Scholar 

  15. [15]

    Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 1987, 134, 1611–1620.

    Article  Google Scholar 

  16. [16]

    Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

    Article  Google Scholar 

  17. [17]

    Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206–218.

    Article  Google Scholar 

  18. [18]

    Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

    Article  Google Scholar 

  19. [19]

    Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

    Article  Google Scholar 

  20. [20]

    Liu, Q.-C.; Xu, J.-J.; Yuan, S.; Chang, Z.-W.; Xu, D.; Yin, Y.-B.; Li, L.; Zhong, H.-X.; Jiang, Y.-S.; Yan, J.-M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium–oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

    Article  Google Scholar 

  21. [21]

    Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 10, 1605989.

    Article  Google Scholar 

  22. [22]

    Lee, H.; Lee, D. J.; Kim, Y.-J.; Park, J.-K.; Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 2015, 284, 103–108.

    Article  Google Scholar 

  23. [23]

    Lee, D. J.; Lee, H.; Song, J.; Ryou, M.-H.; Lee, Y. M.; Kim, H.-T.; Park, J.-K. Composite protective layer for Li metal anode in high-performance lithium–oxygen batteries. Electrochem. Commun. 2014, 40, 45–48.

    Article  Google Scholar 

  24. [24]

    Kozen, A. C.; Lin, C.-F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S.-B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 2015, 9, 5884–5892.

    Article  Google Scholar 

  25. [25]

    Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 2015, 27, 6457–6462.

    Article  Google Scholar 

  26. [26]

    Ma, G. Q.; Wen, Z. Y.; Wu, M. F.; Shen, C.; Wang, Q. S.; Jin, J.; Wu, X. W. A lithium anode protection guided highlystable lithium–sulfur battery. Chem. Commun. 2014, 50, 14209–14212.

    Article  Google Scholar 

  27. [27]

    Wu, M. F.; Wen, Z. Y.; Liu, Y.; Wang, X. Y.; Huang, L. Z. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources 2011, 196, 8091–8097.

    Article  Google Scholar 

  28. [28]

    Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

    Article  Google Scholar 

  29. [29]

    Wang, L. P.; Wang, Q. J.; Jia, W. S.; Chen, S. L.; Gao, P.; Li, J. Z. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J. Power Sources 2017, 342, 175–182.

    Article  Google Scholar 

  30. [30]

    Dudney, N. J. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. J. Power Sources 2000, 89, 176–179.

    Article  Google Scholar 

  31. [31]

    Cao, Y. Q.; Meng, X. B.; Elam, J. W. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem 2016, 3, 858–863.

    Article  Google Scholar 

  32. [32]

    Belov, D. G.; Yarmolenko, O. V.; Peng, A.; Efimov, O. N. Lithium surface protection by polyacetylene in situ polymerization. Synth. Metals 2006, 156, 745–751.

    Article  Google Scholar 

  33. [33]

    Choi, S. M.; Kang, I. S.; Sun, Y.-K.; Song, J.-H.; Chung, S.-M.; Kim, D.-W. Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode. J. Power Sources 2013, 244, 363–368.

    Article  Google Scholar 

  34. [34]

    Takehara, Z.-I.; Ogumi, Z.; Uchimoto, Y.; Yasuda, K.; Yoshida, H. Modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene. J. Power Sources 1993, 44, 377–383.

    Article  Google Scholar 

  35. [35]

    Jang, I. C.; Ida, S.; Ishihara, T. Surface coating layer on Li metal for increased cycle stability of Li–O2 batteries. J. Electrochem. Soc. 2014, 161, A821–A826.

    Article  Google Scholar 

  36. [36]

    Song, J.; Lee, H.; Choo, M.-J.; Park, J.-K.; Kim, H.-T. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 2015, 5, 14458.

    Article  Google Scholar 

  37. [37]

    Jin, Z. Q.; Xie, K.; Hong, X. B.; Hu, Z. Q.; Liu, X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources 2012, 218, 163–167.

    Article  Google Scholar 

  38. [38]

    Lu, Y. Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 2015, 5, 1402073.

    Article  Google Scholar 

  39. [39]

    Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 10, 1605531.

    Article  Google Scholar 

  40. [40]

    Kim, J.-H.; Woo, H.-S.; Kim, W. K.; Ryu, K. H.; Kim, D.-W. Improved cycling performance of lithium–oxygen cells by use of a lithium electrode protected with conductive polymer and aluminum fluoride. ACS Appl. Mater. Interfaces 2016, 8, 32300–32306.

    Article  Google Scholar 

  41. [41]

    Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

    Article  Google Scholar 

  42. [42]

    Cheng, X.-B.; Yan, C.; Chen, X.; Guan, C.; Huang, J.-Q.; Peng, H.-J.; Zhang, R.; Yang, S.-T.; Zhang, Q. Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2017, 2, 258–270.

    Article  Google Scholar 

  43. [43]

    Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  Google Scholar 

  44. [44]

    Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

    Article  Google Scholar 

  45. [45]

    Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.

    Article  Google Scholar 

  46. [46]

    Zheng, G. Y.; Wang, C.; Pei, A.; Lopez, J.; Shi, F. F.; Chen, Z.; Sendek, A. D.; Lee, H.-W.; Lu, Z. D.; Schneider, H. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 2016, 1, 1247–1255.

    Article  Google Scholar 

  47. [47]

    Liu, W.; Li, W. Y.; Zhuo, D.; Zheng, G. Y.; Lu, Z. D.; Liu, K.; Cui, Y. Core–shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent. Sci. 2017, 3, 135–140.

    Article  Google Scholar 

  48. [48]

    Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    Article  Google Scholar 

  49. [49]

    Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H. B.; Zhou, F.; Yu, S.-H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

    Article  Google Scholar 

  50. [50]

    Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

    Article  Google Scholar 

  51. [51]

    Neuhold, S.; Schroeder, D. J.; Vaughey, J. T. Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes. J. Power Sources 2012, 206, 295–300.

    Article  Google Scholar 

  52. [52]

    Wang, C.; Wang, D. L.; Dai, C. S. High-rate capability and enhanced cyclability of rechargeable lithium batteries using foam lithium anode. J. Electrochem. Soc. 2008, 155, A390–A394.

    Article  Google Scholar 

  53. [53]

    Lee, H.; Song, J.; Kim, Y.-J.; Park, J.-K.; Kim, H.-T. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for highperformance lithium metal batteries. Sci. Rep. 2016, 6, 30830.

    Article  Google Scholar 

  54. [54]

    Ji, X. L.; Liu, D.-Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 2012, 7, 10–20.

    Article  Google Scholar 

  55. [55]

    Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 2015, 9, 6373–6382.

    Article  Google Scholar 

  56. [56]

    Zhang, R.; Cheng, X.-B.; Zhao, C.-Z.; Peng, H.-J.; Shi, J.-L.; Huang, J.-Q.; Wang, J. F.; Wei, F.; Zhang, Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 2016, 28, 2155–2162.

    Article  Google Scholar 

  57. [57]

    Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

    Article  Google Scholar 

  58. [58]

    Xie, K. Y.; Wei, W. F.; Yuan, K.; Lu, W.; Guo, M.; Li, Z. H.; Song, Q.; Liu, X. R.; Wang, J.-G.; Shen, C. Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@ Ni scaffold. ACS Appl. Mater. Interfaces 2016, 8, 26091–26097.

    Article  Google Scholar 

  59. [59]

    Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016, 1, 287–297.

    Article  Google Scholar 

  60. [60]

    Ryou, M. H.; Lee, Y. M.; Lee, Y.; Winter, M.; Bieker, P. Mechanical surface modification of lithium metal: Towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 2015, 25, 834–841.

    Article  Google Scholar 

  61. [61]

    Park, J.; Jeong, J.; Lee, Y.; Oh, M.; Ryou, M.-H.; Lee, Y. M. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Adv. Mater. Interfaces 2016, 3, 1600140.

    Article  Google Scholar 

  62. [62]

    Kim, J. S.; Yoon, W. Y. Improvement in lithium cycling efficiency by using lithium powder anode. Electrochim. Acta 2004, 50, 531–534.

    Article  Google Scholar 

  63. [63]

    Hong, S.-T.; Kim, J.-S.; Lim, S.-J.; Yoon, W. Y. Surface characterization of emulsified lithium powder electrode. Electrochim. Acta 2004, 50, 535–539.

    Article  Google Scholar 

  64. [64]

    Heine, J.; Krüger, S.; Hartnig, C.; Wietelmann, U.; Winter, M.; Bieker, P. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 2014, 4, 1300815.

    Article  Google Scholar 

  65. [65]

    Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P.-C.; Chu, S.; Cui, Y. Polymer nanofiberguided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

    Article  Google Scholar 

  66. [66]

    Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

    Article  Google Scholar 

  67. [67]

    Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436.

    Article  Google Scholar 

  68. [68]

    Zhang, D.; Zhou, Y.; Liu, C. H.; Fan, S. S. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. Nanoscale 2016, 8, 11161–11167.

    Article  Google Scholar 

  69. [69]

    Zhang, D.; Yin, Y. L.; Liu, C. H.; Fan, S. S. Modified secondary lithium metal batteries with the polyaniline–carbon nanotube composite buffer layer. Chem. Commun. 2015, 51, 322–325.

    Article  Google Scholar 

  70. [70]

    Xie, K. Y.; Yuan, K.; Zhang, K.; Shen, C.; Lv, W. B.; Liu, X. R.; Wang, J.-G.; Wei, B. Q. Dual functionalities of carbon nanotube films for dendrite-free and high energy–high power lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 4605–4613.

    Article  Google Scholar 

  71. [71]

    Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

    Article  Google Scholar 

  72. [72]

    Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volumechange and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

    Article  Google Scholar 

  73. [73]

    Liu, S. S.; Yang, J.; Yin, L. C.; Li, Z. M.; Wang, J. L.; Nuli, Y. Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeable lithium batteries. Electrochim. Acta 2011, 56, 8900–8905.

    Article  Google Scholar 

  74. [74]

    Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small 2014, 10, 4257–4263.

    Google Scholar 

  75. [75]

    Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnetbased solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

    Article  Google Scholar 

  76. [76]

    Luo, W.; Gong, Y. H.; Zhu, Y. Z.; Fu, K. K.; Dai, J. Q.; Lacey, S. D.; Wang, C. W.; Liu, B. Y.; Han, X. G.; Mo, Y. F. et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 2016, 138, 12258–12262.

    Article  Google Scholar 

  77. [77]

    Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., in press, DOI: 10.1038/nmat4821.

  78. [78]

    Yan, K.; Lu, Z. D.; Lee, H.-W.; Xiong, F.; Hsu, P.-C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    Article  Google Scholar 

  79. [79]

    Kang, H.-K.; Woo, S.-G.; Kim, J.-H.; Yu, J.-S.; Lee, S.-R.; Kim, Y.-J. Few-layer graphene island seeding for dendritefree Li metal electrodes. ACS Appl. Mater. Interfaces 2016, 8, 26895–26901.

    Article  Google Scholar 

  80. [80]

    Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    Article  Google Scholar 

  81. [81]

    Monroe, C.; Newman, J. Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 2003, 150, A1377–A1384.

    Article  Google Scholar 

  82. [82]

    Liu, W.; Lin, D. C.; Pei, A.; Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 2016, 138, 15443–15450.

    Article  Google Scholar 

  83. [83]

    Kim, J.-H.; Kang, H.-K.; Woo, S.-G.; Jeong, G.; Park, M.-S.; Kim, K. J.; Yu, J.-S.; Yim, T.; Jo, Y. N.; Kim, H. et al. Oriented TiO2 nanotubes as a lithium metal storage medium. J. Electroanalyt. Chem. 2014, 726, 51–54.

    Article  Google Scholar 

  84. [84]

    Han, J.-H.; Khoo, E.; Bai, P.; Bazant, M. Z. Over-limiting current and control of dendritic growth by surface conduction in nanopores. Sci. Rep. 2014, 4, 7056.

    Article  Google Scholar 

  85. [85]

    Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229.

    Article  Google Scholar 

  86. [86]

    Kang, S. J.; Mori, T.; Suk, J.; Kim, D. W.; Kang, Y.; Wilcke, W.; Kim, H.-C. Improved cycle efficiency of lithium metal electrodes in Li–O2 batteries by a two-dimensionally ordered nanoporous separator. J. Mater. Chem. A 2014, 2, 9970–9974.

    Article  Google Scholar 

  87. [87]

    Arora, P.; Zhang, Z. M. Battery separators. Chem. Rev. 2004, 104, 4419–4462.

    Article  Google Scholar 

  88. [88]

    Ryou, M. H.; Lee, D. J.; Lee, J. N.; Lee, Y. M.; Park, J. K.; Choi, J. W. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopaminecoated separators. Adv. Energy Mater. 2012, 2, 645–650.

    Article  Google Scholar 

  89. [89]

    Shi, C.; Dai, J. H.; Shen, X.; Peng, L. Q.; Li, C.; Wang, X.; Zhang, P.; Zhao, J. B. A high-temperature stable ceramiccoated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. J. Membrane Sci. 2016, 517, 91–99.

    Article  Google Scholar 

  90. [90]

    Jeon, H.; Jin, S. Y.; Park, W. H.; Lee, H.; Kim, H.-T.; Ryou, M.-H.; Lee, Y. M. Plasma-assisted water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries. Electrochim. Acta 2016, 212, 649–656.

    Article  Google Scholar 

  91. [91]

    Kumar, J.; Kichambare, P.; Rai, A. K.; Bhattacharya, R.; Rodrigues, S.; Subramanyam, G. A high performance ceramic-polymer separator for lithium batteries. J. Power Sources 2016, 301, 194–198.

    Article  Google Scholar 

  92. [92]

    Chi, M. M.; Shi, L. Y.; Wang, Z. Y.; Zhu, J. F.; Mao, X. F.; Zhao, Y.; Zhang, M. H.; Sun, L. N.; Yuan, S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy 2016, 28, 1–11.

    Article  Google Scholar 

  93. [93]

    Jiang, W.; Liu, Z. H.; Kong, Q. S.; Yao, J. H.; Zhang, C. J.; Han, P. X.; Cui, G. L. A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 2013, 232, 44–48.

    Article  Google Scholar 

  94. [94]

    Lin, D. C.; Zhuo, D.; Liu, Y. Y.; Cui, Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 2016, 138, 11044–11050.

    Article  Google Scholar 

  95. [95]

    Yu, B.-C.; Park, K.; Jang, J.-H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium–sulfur battery. ACS Energy Lett. 2016, 1, 633–637.

    Article  Google Scholar 

  96. [96]

    Chang, C.-H.; Chung, S.-H.; Manthiram, A. Dendrite-free lithium anode via a homogenous Li-ion distribution enabled by a kimwipe paper. Adv. Sustainable Syst. 2017, 1, 1600034.

    Article  Google Scholar 

  97. [97]

    Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

    Article  Google Scholar 

  98. [98]

    Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2016, 2, e1600320.

    Article  Google Scholar 

  99. [99]

    Liu, K.; Bai, P.; Bazant, M. Z.; Wang, C.-A.; Li, J. A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA·cm–2 observed in situ in a capillary cell. J. Mater. Chem. A 2017, 5, 4300–4307.

    Article  Google Scholar 

  100. [100]

    Shin, W.-K.; Kannan, A. G.; Kim, D.-W. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces 2015, 7, 23700–23707.

    Article  Google Scholar 

  101. [101]

    Tung, S.-O.; Ho, S.; Yang, M.; Zhang, R. L.; Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 2015, 6, 6152.

    Article  Google Scholar 

  102. [102]

    Hao, X. M.; Zhu, J.; Jiang, X.; Wu, H. T.; Qiao, J. S.; Sun, W.; Wang, Z. H.; Sun, K. N. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 2016, 16, 2981–2987.

    Article  Google Scholar 

  103. [103]

    Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396–A404.

    Article  Google Scholar 

  104. [104]

    Ferrese, A.; Newman, J. Mechanical deformation of a lithium-metal anode due to a very stiff separator. J. Electrochem. Soc. 2014, 161, A1350–A1359.

    Article  Google Scholar 

  105. [105]

    Wu, H.; Zhuo, D.; Kong, D. S.; Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 2014, 5, 5193.

    Article  Google Scholar 

  106. [106]

    Liu, K.; Zhuo, D.; Lee, H. W.; Liu, W.; Lin, D. C.; Lu, Y. Y.; Cui, Y. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv. Mater. 2017, 29, 1603987.

    Article  Google Scholar 

  107. [107]

    Chen, Z.; Hsu, P.-C.; Lopez, J.; Li, Y. Z.; To, J. W. F.; Liu, N.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 2016, 1, 15009.

    Article  Google Scholar 

  108. [108]

    Yim, T.; Park, M.-S.; Woo, S.-G.; Kwon, H.-K.; Yoo, J.-K.; Jung, Y. S.; Kim, K. J.; Yu, J.-S.; Kim, Y.-J. Selfextinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperatureresponsiveness. Nano Lett. 2015, 15, 5059–5067.

    Article  Google Scholar 

  109. [109]

    Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Electrospun core–shell microfiber separator with thermal-triggered flameretardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978.

    Article  Google Scholar 

  110. [110]

    Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

    Article  Google Scholar 

  111. [111]

    Steiger, J. Mechanisms of dendrite growth in lithium metal batteries. Ph.D. Dissertation, Karlsruher Institut für Technologie (KIT), Karlsruhe, 2015.

    Google Scholar 

  112. [112]

    Yoo, S.-H.; Lee, J.-H.; Jung, Y.-K.; Soon, A. Exploring stereographic surface energy maps of cubic metals via an effective pair-potential approach. Phys. Rev. B 2016, 93, 035434.

    Article  Google Scholar 

  113. [113]

    Liu, Z. X.; Bertolini, S.; Balbuena, P. B.; Mukherjee, P. P. Li2S film formation on lithium anode surface of Li–S batteries. ACS App. Mater. Interfaces 2016, 8, 4700–4708.

    Article  Google Scholar 

  114. [114]

    Milchev, A. Electrocrystallization: Fundamentals of Nucleation and Growth; Springer: New York, 2002.

    Google Scholar 

  115. [115]

    Milchev, A.; Irene Montenegro, M. A galvanostatic study of electrochemical nucleation. J. Electroanalyt. Chem. 1992, 333, 93–102.

    Article  Google Scholar 

  116. [116]

    Sano, H.; Sakaebe, H.; Senoh, H.; Matsumoto, H. Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes. J. Electrochem. Soc. 2014, 161, A1236–A1240.

    Article  Google Scholar 

  117. [117]

    Sagane, F.; Ikeda, K.-I.; Okita, K.; Sano, H.; Sakaebe, H.; Iriyama, Y. Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power Sources 2013, 233, 34–42.

    Article  Google Scholar 

  118. [118]

    Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

    Article  Google Scholar 

  119. [119]

    Stark, J. K.; Ding, Y.; Kohl, P. A. Nucleation of electrodeposited lithium metal: Dendritic growth and the effect of co-deposited sodium. J. Electrochem. Soc. 2013, 160, D337–D342.

    Article  Google Scholar 

  120. [120]

    Ely, D. R.; García, R. E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 2013, 160, A662–A668.

    Article  Google Scholar 

  121. [121]

    Garay-Tapia, A. M.; Romero, A. H.; Barone, V. Lithium adsorption on graphene: From isolated adatoms to metallic sheets. J. Chem. Theory Comput. 2012, 8, 1064–1071.

    Article  Google Scholar 

  122. [122]

    Fan, X. F.; Zheng, W. T.; Kuo, J.-L.; Singh, D. J. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 7793–7797.

    Article  Google Scholar 

  123. [123]

    Liu, M. J.; Kutana, A.; Liu, Y. Y.; Yakobson, B. I. Firstprinciples studies of Li nucleation on graphene. J. Phys. Chem. Lett. 2014, 5, 1225–1229.

    Article  Google Scholar 

Download references

Acknowledgement

Y. C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research Program and Battery500 Consortium.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Liu, Y., Pei, A. et al. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 10, 4003–4026 (2017). https://doi.org/10.1007/s12274-017-1596-1

Download citation

Keywords

  • lithium metal anodes
  • nanoscale lithium nucleation