Advertisement

Nano Research

, Volume 10, Issue 11, pp 3754–3764 | Cite as

Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries

  • Jin Xie
  • Jie Zhao
  • Yayuan Liu
  • Haotian Wang
  • Chong Liu
  • Tong Wu
  • Po-Chun Hsu
  • Dingchang Lin
  • Yang Jin
  • Yi Cui
Research Article

Abstract

Developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO2 interfacial layers on LiCoO2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO2 coating not only prevented interfacial reactions between the LiCoO2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoO2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g–1 was achieved for the LiCoO2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li+/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li+/Li.

Keywords

Lithium ion batteries lithium cobalt oxide atomic layer deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Part of this work was performed at the Stanford Nano Shared Facilities (SNSF) and Stanford Nanofabrication Facility (SNF). We thank Allen Pei, Yongming Sun, and Kipil Lim for insightful discussion, Michelle Rincon, Christopher Neumann and Feifei Lian for technical assistance.

Supplementary material

12274_2017_1588_MOESM1_ESM.pdf (1.9 mb)
Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries

References

  1. [1]
    Johnson, B. A.; White, R. E. Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70, 48–54.CrossRefGoogle Scholar
  2. [2]
    Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.CrossRefGoogle Scholar
  3. [3]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  4. [4]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.Google Scholar
  5. [5]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  6. [6]
    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.CrossRefGoogle Scholar
  7. [7]
    Cho, J.; Kim, Y. J.; Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 2000, 12, 3788–3791.CrossRefGoogle Scholar
  8. [8]
    Chen, Z. H.; Dahn, J. R. Studies of LiCoO2 coated with metal oxides. Electrochem. Solid-State Lett. 2003, 6, A221–A224.CrossRefGoogle Scholar
  9. [9]
    Chen, Z. H.; Dahn, J. R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090.CrossRefGoogle Scholar
  10. [10]
    Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J. Electrochem. Soc. 2010, 157, A75–A81.CrossRefGoogle Scholar
  11. [11]
    Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; An, Y. F.; Dillon, A. C.; George, S. M.; Lee, S. H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414–418.CrossRefGoogle Scholar
  12. [12]
    Cho, J.; Kim, Y. J.; Kim, T. J.; Park, B. Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem., Int. Ed. 2001, 40, 3367–3369.CrossRefGoogle Scholar
  13. [13]
    Cho, J.; Kim, Y. J.; Park, B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J. Electrochem. Soc. 2001, 148, A1110–A1115.CrossRefGoogle Scholar
  14. [14]
    Park, J. S.; Mane, A. U.; Elam, J. W.; Croy, J. R. Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. Chem. Mater. 2015, 27, 1917–1920.CrossRefGoogle Scholar
  15. [15]
    Jung, Y. S.; Lu, P.; Cavanagh, A. S.; Ban, C. M.; Kim, G. H.; Lee, S. H.; George, S. M.; Harris, S. J.; Dillon, A. C.Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Adv. Energy Mater. 2013, 3, 213–219.CrossRefGoogle Scholar
  16. [16]
    Cao, H.; Xia, B. J.; Zhang, Y.; Xu, N. X. LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics 2005, 176, 911–914.CrossRefGoogle Scholar
  17. [17]
    Park, J. S.; Meng, X. B.; Elam, J. W.; Hao, S. Q.; Wolverton, C.; Kim, C.; Cabana, J. Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 2014, 26, 3128–3134.CrossRefGoogle Scholar
  18. [18]
    Liu, J.; Banis, M. N.; Li, X. F.; Lushington, A.; Cai, M.; Li, R. Y.; Sham, T. K.; Sun, X. L. Atomic layer deposition of lithium tantalate solid-state electrolytes. J. Phys. Chem. C 2013, 117, 20260–20267.CrossRefGoogle Scholar
  19. [19]
    Mäntymäki, M.; Hämäläinen, J.; Puukilainen, E.; Sajavaara, T.; Ritala, M.; Leskela, M. Atomic layer deposition of LiF thin films from Lithd, Mg(thd)2, and TiF4 precursors. Chem. Mater. 2013, 25, 1656–1663.CrossRefGoogle Scholar
  20. [20]
    Kozen, A. C.; Pearse, A. J.; Lin, C. F.; Noked, M.; Rubloff, G. W. Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 2015, 27, 5324–5331.CrossRefGoogle Scholar
  21. [21]
    Glass, A. M.; Nassau, K. Lithium ion conduction in rapidly quenched Li2O-Al2O3, Li2O-Ga2O3, and Li2O-Bi2O3 glasses. J. Appl. Phys. 1980, 51, 3756–3761.CrossRefGoogle Scholar
  22. [22]
    Aaltonen, T.; Nilsen, O.; Magrasó, A.; Fjellvåg, H. Atomic layer deposition of Li2O-Al2O3 thin films. Chem. Mater. 2011, 23, 4669–4675.CrossRefGoogle Scholar
  23. [23]
    Hu, Y.; Ruud, A.; Miikkulainen, V.; Norby, T.; Nilsen, O.; Fjellvag, H. Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition. RSC Adv. 2016, 6, 60479–60486.CrossRefGoogle Scholar
  24. [24]
    George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.CrossRefGoogle Scholar
  25. [25]
    Wang, H. F.; Jang, Y. I.; Huang, B. Y.; Sadoway, D. R.; Chiang, Y. M. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 473–480.CrossRefGoogle Scholar
  26. [26]
    Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. Solid-state electrochemical kinetics of Li-ion intercalation into Li1–xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J. Electrochem. Soc. 1999, 146, 1279–1289.CrossRefGoogle Scholar
  27. [27]
    Ho, C.; Raistrick, I. D.; Huggins, R. A. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 1980, 127, 343–350.CrossRefGoogle Scholar
  28. [28]
    Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. AC impedance of the Li(1–x)CoO2 electrode. Solid State Ion. 1986, 18–19, 794–798.CrossRefGoogle Scholar
  29. [29]
    Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. AC impedance analysis of polycrystalline insertion electrodes: Application to Li1–xCoO2. J. Electrochem. Soc. 1985, 132, 1521–1528.CrossRefGoogle Scholar
  30. [30]
    Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 1996, 83, 167–173.CrossRefGoogle Scholar
  31. [31]
    Baddour-Hadjean, R.; Pereira-Ramos, J. P. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 2010, 110, 1278–1319.CrossRefGoogle Scholar
  32. [32]
    Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V. The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 1988, 21, L199–L201.CrossRefGoogle Scholar
  33. [33]
    Park, Y.; Kim, N. H.; Kim, J. M.; Kim, Y. C.; Jeong, Y. U.; Lee, S. M.; Choi, H. C.; Jung, Y. M. Surface reaction of LiCoO2/Li system under high-voltage conditions by X-ray spectroscopy and two-dimensional correlation spectroscopy (2D-COS). Appl. Spectrosc. 2011, 65, 320–325.CrossRefGoogle Scholar
  34. [34]
    Park, Y.; Kim, N. H.; Kim, J. Y.; Eom, I. Y.; Jeong, Y. U.; Kim, M. S.; Lee, S. M.; Choi, H. C.; Jung, Y. M. Surface characterization of the high voltage LiCoO2/Li cell by X-ray photoelectron spectroscopy and 2D correlation analysis. Vib. Spectrosc. 2010, 53, 60–63.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jin Xie
    • 1
  • Jie Zhao
    • 1
  • Yayuan Liu
    • 1
  • Haotian Wang
    • 2
  • Chong Liu
    • 1
  • Tong Wu
    • 1
  • Po-Chun Hsu
    • 1
  • Dingchang Lin
    • 1
  • Yang Jin
    • 1
  • Yi Cui
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Applied PhysicsStanford UniversityStanfordUSA
  3. 3.Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations