Nano Research

, Volume 10, Issue 5, pp 1847–1860 | Cite as

Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors

  • Zhi Li
  • Kaveh Ahadi
  • Keren Jiang
  • Behzad Ahvazi
  • Peng Li
  • Anthony O. Anyia
  • Ken Cadien
  • Thomas Thundat
Research Article


Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass. In this study, we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors. The long cellulose nanofibrils (CNFs) formed a macroporous framework, and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores. This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) Al2O3 conformal coating, which effectively prevented the aggregation of nanocellulose. These carbonized, partially graphitized nanocellulose fibers were interconnected, forming an integrated and highly conductive network with a large specific surface area of 1,244 m2·g–1. The two-level hierarchical porous structure facilitated fast ion transport in the film. When tested as an electrode material with a high mass loading of 4 mg·cm–2 for supercapacitors, the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F·g–1 and extraordinary performance at high current densities. Even at a very high current of 50 A·g–1, it retained 65% of its original specific capacitance, which makes it a promising electrode material for high-power applications.


supercapacitors hierarchical structure atomic layer deposition (ALD) integrated structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Canada Excellence Research Chairs Program and Alberta Bio Future Research and Innovation program (No. BFR-16-074). The authors acknowledge the nanoFAB facility at the University of Alberta for its material characterization support.

Supplementary material

12274_2017_1573_MOESM1_ESM.pdf (3.7 mb)
Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors


  1. [1]
    Raccichini, R.; Varzi, A.; Wei, D.; Passerini, S. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater., in press, DOI: 10.1002/adma.201603421.Google Scholar
  2. [2]
    Ji, L. W.; Meduri, P.; Agubra, V.; Xiao, X. C.; Alcoutlabi, M. Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 2016, 6, 1502159.CrossRefGoogle Scholar
  3. [3]
    Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 2014, 26, 2059–2065.CrossRefGoogle Scholar
  4. [4]
    Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.CrossRefGoogle Scholar
  5. [5]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  6. [6]
    Yang, X. W.; Qiu, L.; Cheng, C.; Wu, Y. Z.; Ma, Z. F.; Li, D. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem., Int. Ed. 2011, 50, 7325–7328.CrossRefGoogle Scholar
  7. [7]
    Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014, 7, 1564–1596.CrossRefGoogle Scholar
  8. [8]
    Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure–performance relationship. Adv. Mater., in press, DOI: 10.1002/adma.201604569.Google Scholar
  9. [9]
    Li, Z.; Ding, J.; Wang, H. L.; Cui, K.; Stephenson, T.; Karpuzov, D.; Mitlin, D. High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 2015, 15, 369–378.CrossRefGoogle Scholar
  10. [10]
    Huang, J.-Q.; Wang, Z. Y.; Xu, Z.-L.; Chong, W. G.; Qin, X. Y.; Wang, X. Y.; Kim, J.-K. Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 28663–28670.CrossRefGoogle Scholar
  11. [11]
    Liu, S. H.; Wang, Z. Y.; Yu, C.; Zhao, Z. B.; Fan, X. M.; Ling, Z.; Qiu, J. S. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for highenergy Li-O2 batteries. J. Mater. Chem. A 2013, 1, 12033–12037.CrossRefGoogle Scholar
  12. [12]
    Lin, Z. Q.; Zeng, Z. P.; Gui, X. C.; Tang, Z. K.; Zou, M. C.; Cao, A. Y. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv. Energy Mater. 2016, 6, 1600554.CrossRefGoogle Scholar
  13. [13]
    Gogotsi, Y. What nano can do for energy storage. ACS Nano 2014, 8, 5369–5371.CrossRefGoogle Scholar
  14. [14]
    Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem., Int. Ed. 2011, 50, 5438–5466.CrossRefGoogle Scholar
  15. [15]
    Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227.CrossRefGoogle Scholar
  16. [16]
    Yang, X.; Cranston, E. D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 2014, 26, 6016–6025.CrossRefGoogle Scholar
  17. [17]
    Niu, Q. Y.; Gao, K. Z.; Shao, Z. Q. Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 2014, 6, 4083–4088.CrossRefGoogle Scholar
  18. [18]
    Gao, K. Z.; Shao, Z. Q.; Li, J.; Wang, X.; Peng, X. Q.; Wang, W. J.; Wang, F. J. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J. Mater. Chem. A 2013, 1, 63–67.CrossRefGoogle Scholar
  19. [19]
    Liu, H. Z.; Geng, B. Y.; Chen, Y. F.; Wang, H. Y. Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustainable Chem. Eng. 2017, 5, 49–66.CrossRefGoogle Scholar
  20. [20]
    Kim, J.-H.; Gu, M. S.; Lee, D. H.; Kim, J.-H.; Oh, Y.-S.; Min, S. H.; Kim, B.-S.; Lee, S.-Y. Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett. 2016, 16, 5533–5541.CrossRefGoogle Scholar
  21. [21]
    Wang, Z. H.; Xu, C.; Tammela, P.; Huo, J. X.; Strømme, M.; Edström, K.; Gustafsson, T.; Nyholm, L. Flexible freestanding cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 14109–14115.CrossRefGoogle Scholar
  22. [22]
    Yang, X.; Shi, K. Y.; Zhitomirsky, I.; Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 2015, 27, 6104–6109.CrossRefGoogle Scholar
  23. [23]
    Li, Z.; Liu, J.; Jiang, K. R.; Thundat, T. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 2016, 25, 161–169.CrossRefGoogle Scholar
  24. [24]
    Wang, L. P.; Schütz, C.; Salazar-Alvarez, G.; Titirici, M.-M. Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv. 2014, 4, 17549–17554.CrossRefGoogle Scholar
  25. [25]
    Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Guan, Q.-F.; Yu, S.-H. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density. Adv. Mater. 2013, 25, 4746–4752.CrossRefGoogle Scholar
  26. [26]
    Wu, Z.-Y.; Liang, H.-W.; Li, C.; Hu, B.-C.; Xu, X.-X.; Wang, Q.; Chen, J.-F.; Yu, S.-H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861–1872.CrossRefGoogle Scholar
  27. [27]
    Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Yao, W.-T.; Yu, Z.-Y.; Yu, S.-H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.CrossRefGoogle Scholar
  28. [28]
    Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291–296.CrossRefGoogle Scholar
  29. [29]
    George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.CrossRefGoogle Scholar
  30. [30]
    Ahadi, K.; Cadien, K. Ultra low density of interfacial traps with mixed thermal and plasma enhanced ALD of high-κ gate dielectrics. RSC Adv. 2016, 6, 16301–16307.CrossRefGoogle Scholar
  31. [31]
    Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties; Wiley: New York, 1988.Google Scholar
  32. [32]
    Wu, Y. P.; Wan, C. R.; Jiang, C. Y.; Fang, S. B.; Jiang, Y. Y. Mechanism of lithium storage in low temperature carbon. Carbon 1999, 37, 1901–1908.CrossRefGoogle Scholar
  33. [33]
    Rhim, Y.-R.; Zhang, D. J.; Rooney, M.; Nagle, D. C.; Fairbrother, D. H.; Herman, C.; Drewry, D. G., III. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature. Carbon 2010, 48, 31–40.Google Scholar
  34. [34]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  35. [35]
    Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Plenum Press: New York, 1999.CrossRefGoogle Scholar
  36. [36]
    Raymundo-Piñero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 2006, 44, 2498–2507.CrossRefGoogle Scholar
  37. [37]
    Zhang, F.; Liu, T. Y.; Hou, G. H.; Kou, T. Y.; Yue, L.; Guan, R. F.; Li, Y. Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 2016, 9, 2875–2888.CrossRefGoogle Scholar
  38. [38]
    Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  39. [39]
    Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X. H.; Xu, Z. W.; Wang, H. L.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 431–437.CrossRefGoogle Scholar
  40. [40]
    Yu, J. L.; Lu, W. B.; Pei, S. P.; Gong, K.; Wang, L. Y.; Meng, L. H.; Huang, Y. D.; Smith, J. P.; Booksh, K. S.; Li, Q. W. et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 2016, 10, 5204–5211.CrossRefGoogle Scholar
  41. [41]
    Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y.-J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.CrossRefGoogle Scholar
  42. [42]
    Kim, H.-K.; Kamali, A. R.; Roh, K. C.; Kim, K.-B.; Fray, D. J. Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications. Energy Environ. Sci. 2016, 9, 2249–2256.CrossRefGoogle Scholar
  43. [43]
    Qin, K. Q.; Liu, E. Z.; Li, J. J.; Kang, J. L.; Shi, C. S.; He, C. N.; He, F.; Zhao, N. Q. Free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv. Energy Mater. 2016, 6, 1600755.CrossRefGoogle Scholar
  44. [44]
    Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H., Jr.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 2010, 132, 14067–14069.CrossRefGoogle Scholar
  45. [45]
    Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.CrossRefGoogle Scholar
  46. [46]
    Sun, X. X.; Cheng, P.; Wang, H. J.; Xu, H.; Dang, L. Q.; Liu, Z. H.; Lei, Z. B. Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon 2015, 92, 1–10.CrossRefGoogle Scholar
  47. [47]
    Du, C. S.; Pan, N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 2006, 160, 1487–1494.CrossRefGoogle Scholar
  48. [48]
    Zheng, C.; Qian, W. Z.; Cui, C. J.; Zhang, Q.; Jin, Y. G.; Zhao, M. Q.; Tan, P. H.; Wei, F. Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon 2012, 50, 5167–5175.CrossRefGoogle Scholar
  49. [49]
    Ouyang, A.; Cao, A. Y.; Hu, S.; Li, Y. H.; Xu, R. Q.; Wei, J. Q.; Zhu, H. W.; Wu, D. H. Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 2016, 8, 11179–11187.CrossRefGoogle Scholar
  50. [50]
    Won, J. H.; Jeong, H. M.; Kang, J. K. Synthesis of nitrogenrich nanotubes with internal compartments having open mesoporous channels and utilization to hybrid full-cell capacitors enabling high energy and power densities over robust cycle life. Adv. Energy Mater. 2017, 7, 1601355.CrossRefGoogle Scholar
  51. [51]
    You, S. J.; Ma, M.; Wang, W.; Qi, D. P.; Chen, X. D.; Qu, J. H.; Ren, N. Q. 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells. Adv. Energy Mater. 2017, 7, 1601364.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhi Li
    • 1
  • Kaveh Ahadi
    • 1
  • Keren Jiang
    • 1
  • Behzad Ahvazi
    • 2
  • Peng Li
    • 3
  • Anthony O. Anyia
    • 2
    • 4
  • Ken Cadien
    • 1
  • Thomas Thundat
    • 1
  1. 1.Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Biomass Conversion & Processing Technologies InnoTechAlberta Innovates-Technology FuturesEdmontonCanada
  3. 3.nanoFABUniversity of AlbertaEdmontonCanada
  4. 4.National Research Council of CanadaOttawaCanada

Personalised recommendations