Skip to main content
Log in

Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass. In this study, we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors. The long cellulose nanofibrils (CNFs) formed a macroporous framework, and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores. This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) Al2O3 conformal coating, which effectively prevented the aggregation of nanocellulose. These carbonized, partially graphitized nanocellulose fibers were interconnected, forming an integrated and highly conductive network with a large specific surface area of 1,244 m2·g–1. The two-level hierarchical porous structure facilitated fast ion transport in the film. When tested as an electrode material with a high mass loading of 4 mg·cm–2 for supercapacitors, the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F·g–1 and extraordinary performance at high current densities. Even at a very high current of 50 A·g–1, it retained 65% of its original specific capacitance, which makes it a promising electrode material for high-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raccichini, R.; Varzi, A.; Wei, D.; Passerini, S. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater., in press, DOI: 10.1002/adma.201603421.

  2. Ji, L. W.; Meduri, P.; Agubra, V.; Xiao, X. C.; Alcoutlabi, M. Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 2016, 6, 1502159.

    Article  Google Scholar 

  3. Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 2014, 26, 2059–2065.

    Article  Google Scholar 

  4. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  5. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  Google Scholar 

  6. Yang, X. W.; Qiu, L.; Cheng, C.; Wu, Y. Z.; Ma, Z. F.; Li, D. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem., Int. Ed. 2011, 50, 7325–7328.

    Article  Google Scholar 

  7. Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014, 7, 1564–1596.

    Article  Google Scholar 

  8. Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure–performance relationship. Adv. Mater., in press, DOI: 10.1002/adma.201604569.

  9. Li, Z.; Ding, J.; Wang, H. L.; Cui, K.; Stephenson, T.; Karpuzov, D.; Mitlin, D. High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 2015, 15, 369–378.

    Article  Google Scholar 

  10. Huang, J.-Q.; Wang, Z. Y.; Xu, Z.-L.; Chong, W. G.; Qin, X. Y.; Wang, X. Y.; Kim, J.-K. Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 28663–28670.

    Article  Google Scholar 

  11. Liu, S. H.; Wang, Z. Y.; Yu, C.; Zhao, Z. B.; Fan, X. M.; Ling, Z.; Qiu, J. S. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for highenergy Li-O2 batteries. J. Mater. Chem. A 2013, 1, 12033–12037.

    Article  Google Scholar 

  12. Lin, Z. Q.; Zeng, Z. P.; Gui, X. C.; Tang, Z. K.; Zou, M. C.; Cao, A. Y. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv. Energy Mater. 2016, 6, 1600554.

    Article  Google Scholar 

  13. Gogotsi, Y. What nano can do for energy storage. ACS Nano 2014, 8, 5369–5371.

    Article  Google Scholar 

  14. Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem., Int. Ed. 2011, 50, 5438–5466.

    Article  Google Scholar 

  15. Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227.

    Article  Google Scholar 

  16. Yang, X.; Cranston, E. D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 2014, 26, 6016–6025.

    Article  Google Scholar 

  17. Niu, Q. Y.; Gao, K. Z.; Shao, Z. Q. Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 2014, 6, 4083–4088.

    Article  Google Scholar 

  18. Gao, K. Z.; Shao, Z. Q.; Li, J.; Wang, X.; Peng, X. Q.; Wang, W. J.; Wang, F. J. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J. Mater. Chem. A 2013, 1, 63–67.

    Article  Google Scholar 

  19. Liu, H. Z.; Geng, B. Y.; Chen, Y. F.; Wang, H. Y. Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustainable Chem. Eng. 2017, 5, 49–66.

    Article  Google Scholar 

  20. Kim, J.-H.; Gu, M. S.; Lee, D. H.; Kim, J.-H.; Oh, Y.-S.; Min, S. H.; Kim, B.-S.; Lee, S.-Y. Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett. 2016, 16, 5533–5541.

    Article  Google Scholar 

  21. Wang, Z. H.; Xu, C.; Tammela, P.; Huo, J. X.; Strømme, M.; Edström, K.; Gustafsson, T.; Nyholm, L. Flexible freestanding cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 14109–14115.

    Article  Google Scholar 

  22. Yang, X.; Shi, K. Y.; Zhitomirsky, I.; Cranston, E. D. Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 2015, 27, 6104–6109.

    Article  Google Scholar 

  23. Li, Z.; Liu, J.; Jiang, K. R.; Thundat, T. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 2016, 25, 161–169.

    Article  Google Scholar 

  24. Wang, L. P.; Schütz, C.; Salazar-Alvarez, G.; Titirici, M.-M. Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv. 2014, 4, 17549–17554.

    Article  Google Scholar 

  25. Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Guan, Q.-F.; Yu, S.-H. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density. Adv. Mater. 2013, 25, 4746–4752.

    Article  Google Scholar 

  26. Wu, Z.-Y.; Liang, H.-W.; Li, C.; Hu, B.-C.; Xu, X.-X.; Wang, Q.; Chen, J.-F.; Yu, S.-H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861–1872.

    Article  Google Scholar 

  27. Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Yao, W.-T.; Yu, Z.-Y.; Yu, S.-H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.

    Article  Google Scholar 

  28. Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013, 14, 291–296.

    Article  Google Scholar 

  29. George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.

    Article  Google Scholar 

  30. Ahadi, K.; Cadien, K. Ultra low density of interfacial traps with mixed thermal and plasma enhanced ALD of high-κ gate dielectrics. RSC Adv. 2016, 6, 16301–16307.

    Article  Google Scholar 

  31. Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties; Wiley: New York, 1988.

    Google Scholar 

  32. Wu, Y. P.; Wan, C. R.; Jiang, C. Y.; Fang, S. B.; Jiang, Y. Y. Mechanism of lithium storage in low temperature carbon. Carbon 1999, 37, 1901–1908.

    Article  Google Scholar 

  33. Rhim, Y.-R.; Zhang, D. J.; Rooney, M.; Nagle, D. C.; Fairbrother, D. H.; Herman, C.; Drewry, D. G., III. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature. Carbon 2010, 48, 31–40.

    Google Scholar 

  34. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

    Article  Google Scholar 

  35. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Plenum Press: New York, 1999.

    Book  Google Scholar 

  36. Raymundo-Piñero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 2006, 44, 2498–2507.

    Article  Google Scholar 

  37. Zhang, F.; Liu, T. Y.; Hou, G. H.; Kou, T. Y.; Yue, L.; Guan, R. F.; Li, Y. Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 2016, 9, 2875–2888.

    Article  Google Scholar 

  38. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  39. Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X. H.; Xu, Z. W.; Wang, H. L.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 431–437.

    Article  Google Scholar 

  40. Yu, J. L.; Lu, W. B.; Pei, S. P.; Gong, K.; Wang, L. Y.; Meng, L. H.; Huang, Y. D.; Smith, J. P.; Booksh, K. S.; Li, Q. W. et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 2016, 10, 5204–5211.

    Article  Google Scholar 

  41. Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y.-J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.

    Article  Google Scholar 

  42. Kim, H.-K.; Kamali, A. R.; Roh, K. C.; Kim, K.-B.; Fray, D. J. Dual coexisting interconnected graphene nanostructures for high performance supercapacitor applications. Energy Environ. Sci. 2016, 9, 2249–2256.

    Article  Google Scholar 

  43. Qin, K. Q.; Liu, E. Z.; Li, J. J.; Kang, J. L.; Shi, C. S.; He, C. N.; He, F.; Zhao, N. Q. Free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv. Energy Mater. 2016, 6, 1600755.

    Article  Google Scholar 

  44. Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H., Jr.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 2010, 132, 14067–14069.

    Article  Google Scholar 

  45. Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.

    Article  Google Scholar 

  46. Sun, X. X.; Cheng, P.; Wang, H. J.; Xu, H.; Dang, L. Q.; Liu, Z. H.; Lei, Z. B. Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon 2015, 92, 1–10.

    Article  Google Scholar 

  47. Du, C. S.; Pan, N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 2006, 160, 1487–1494.

    Article  Google Scholar 

  48. Zheng, C.; Qian, W. Z.; Cui, C. J.; Zhang, Q.; Jin, Y. G.; Zhao, M. Q.; Tan, P. H.; Wei, F. Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon 2012, 50, 5167–5175.

    Article  Google Scholar 

  49. Ouyang, A.; Cao, A. Y.; Hu, S.; Li, Y. H.; Xu, R. Q.; Wei, J. Q.; Zhu, H. W.; Wu, D. H. Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 2016, 8, 11179–11187.

    Article  Google Scholar 

  50. Won, J. H.; Jeong, H. M.; Kang, J. K. Synthesis of nitrogenrich nanotubes with internal compartments having open mesoporous channels and utilization to hybrid full-cell capacitors enabling high energy and power densities over robust cycle life. Adv. Energy Mater. 2017, 7, 1601355.

    Article  Google Scholar 

  51. You, S. J.; Ma, M.; Wang, W.; Qi, D. P.; Chen, X. D.; Qu, J. H.; Ren, N. Q. 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells. Adv. Energy Mater. 2017, 7, 1601364.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canada Excellence Research Chairs Program and Alberta Bio Future Research and Innovation program (No. BFR-16-074). The authors acknowledge the nanoFAB facility at the University of Alberta for its material characterization support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Li or Thomas Thundat.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ahadi, K., Jiang, K. et al. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res. 10, 1847–1860 (2017). https://doi.org/10.1007/s12274-017-1573-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1573-8

Keywords

Navigation