Nano Research

, Volume 10, Issue 11, pp 3629–3637 | Cite as

Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction

  • Bo Li
  • Shuangming Chen
  • Jie Tian
  • Ming Gong
  • Hangxun XuEmail author
  • Li SongEmail author
Research Article


Highly efficient and durable water oxidation electrocatalysts are critically important in a wide range of clean energy technologies, including water electrolyzers and rechargeable metal-air batteries. Here, we report a novel sonochemical approach to synthesize amorphous nickel-iron oxides/carbon nanohybrids with tunable compositions for the oxygen evolution reaction (OER). The sonochemically synthesized amorphous electrocatalysts with optimal composition exhibit a low overpotential of 290 mV at 10 mA·cm−2 and a Tafel slope of 31 mV·decade−1 in a 0.1 M KOH electrolyte, outperforming the benchmark RuO2 catalyst. Meanwhile, these nanohybrids are also highly stable and remain amorphous even after prolonged cycling. In addition to amorphism, sonochemistry endows as-prepared nickel-iron oxides/carbon nanohybrids with a simultaneously formed carbon scaffold and internal Ni(0), which can enhance the stability and activity for the OER. This work demonstrates that sonochemistry is a unique method for synthesizing amorphous metal oxides toward an efficient and durable OER.


amorphous metal oxides electrocatalysis oxygen evolution reaction sonochemistry X-ray absorption near edge structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Photoemission Endstation (BL10B) in National Synchrotron Radiation Laboratory (NSRL) for collecting X-ray data. This work was supported by the National Key Basic Research Program of China (Nos. 2015CB351903 and 2014CB848900), the National Natural Science Foundation of China (Nos. 21474095, 11574280, 11605201, and U1532112), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018), and the Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2017_1572_MOESM1_ESM.pdf (3.7 mb)
Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction


  1. [1]
    Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Gratzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.CrossRefGoogle Scholar
  2. [2]
    Cox, C. R.; Lee, J. Z.; Nocera, D. G.; Buonassisi, T. Tenpercent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. USA 2014, 111, 14057–14061.CrossRefGoogle Scholar
  3. [3]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  4. [4]
    McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.CrossRefGoogle Scholar
  5. [5]
    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.CrossRefGoogle Scholar
  6. [6]
    Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.CrossRefGoogle Scholar
  7. [7]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.Google Scholar
  8. [8]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  9. [9]
    Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.CrossRefGoogle Scholar
  10. [10]
    Hunter, B. M.; Blakemore, J. D.; Deimund, M.; Gray, H. B.; Winkler, J. R.; Müller, A. M. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 2014, 136, 13118–13121.CrossRefGoogle Scholar
  11. [11]
    Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.CrossRefGoogle Scholar
  12. [12]
    Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solidsolution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.CrossRefGoogle Scholar
  13. [13]
    Fominykh, K.; Chernev, P.; Zaharieva, I.; Sicklinger, J.; Stefanic, G.; Döblinger, M.; Müller, A.; Pokharel, A.; Böcklein, S.; Scheu, C. et al. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 2015, 9, 5180–5188.CrossRefGoogle Scholar
  14. [14]
    Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.CrossRefGoogle Scholar
  15. [15]
    Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygenevolving catalysts. Science 2016, 352, 333–337.CrossRefGoogle Scholar
  16. [16]
    Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.CrossRefGoogle Scholar
  17. [17]
    Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeiβer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.CrossRefGoogle Scholar
  18. [18]
    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.CrossRefGoogle Scholar
  19. [19]
    Bang, J. H.; Suslick, K. S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 2010, 22, 1039–1059.CrossRefGoogle Scholar
  20. [20]
    Xu, H. X.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.CrossRefGoogle Scholar
  21. [21]
    Shafi, K. V. P. M.; Gedanken, A.; Goldfarb, R. B.; Felner, I. Sonochemical preparation of nanosized amorphous Fe-Ni alloys. J. Appl. Phys. 1997, 81, 6901–6905.CrossRefGoogle Scholar
  22. [22]
    Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.CrossRefGoogle Scholar
  23. [23]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  24. [24]
    Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.CrossRefGoogle Scholar
  25. [25]
    Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.CrossRefGoogle Scholar
  26. [26]
    Chen, S.; Duan, J. J.; Ran, J. R.; Qiao, S. Z. Paper-based N-doped carbon films for enhanced oxygen evolution electrocatalysis. Adv. Sci. 2015, 2, 1400015.CrossRefGoogle Scholar
  27. [27]
    Swierk, J. R.; Klaus, S.; Trotochaud, L.; Bell, A. T.; Tilley, T. D. Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (oxy)hydroxide catalysts. J. Phys. Chem. C 2015, 119, 19022–19029.CrossRefGoogle Scholar
  28. [28]
    Qiu, Y.; Xin, L.; Li, W. Z. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte. Langmuir 2014, 30, 7893–7901.CrossRefGoogle Scholar
  29. [29]
    Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.CrossRefGoogle Scholar
  30. [30]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.CrossRefGoogle Scholar
  31. [31]
    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.CrossRefGoogle Scholar
  32. [32]
    Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155–161.CrossRefGoogle Scholar
  33. [33]
    Zhu, J. J.; Li, H. L.; Zhong, L. Y.; Xiao, P.; Xu, X. L.; Yang, X. G.; Zhao, Z.; Li, J. L. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940.CrossRefGoogle Scholar
  34. [34]
    Merino, N. A.; Barbero, B. P.; Eloy, P.; Cadús, L. E. La1−xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS. Appl. Surf. Sci. 2006, 253, 1489–1493.CrossRefGoogle Scholar
  35. [35]
    Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.CrossRefGoogle Scholar
  36. [36]
    Zhu, Y. L.; Zhou, W.; Chen, Y. B.; Yu, J.; Liu, M. L.; Shao, Z. P. A high-performance electrocatalyst for oxygen evolution reaction: LiCo0.8Fe0.2O2. Adv. Mater. 2015, 27, 7150–7155.CrossRefGoogle Scholar
  37. [37]
    Cui, B.; Lin, H.; Li, J.-B.; Li, X.; Yang, J.; Tao, J. Core–ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440–1447.CrossRefGoogle Scholar
  38. [38]
    Hasan, M.; Newcomb, S. B.; Razeeb, K. M. Porous core/shell Ni@NiO/Pt hybrid nanowire arrays as a high efficient electrocatalyst for alkaline direct ethanol fuel cells. J. Electrochem. Soc. 2012, 159, F203–F209.CrossRefGoogle Scholar
  39. [39]
    Ressler, T. J. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrotron Rad. 1998, 5, 118–122.CrossRefGoogle Scholar
  40. [40]
    Ankudinow, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  2. 2.National Synchrotron Radiation Laboratory, CAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Engineering and Materials Science Experiment CenterUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations