Nano Research

, Volume 10, Issue 10, pp 3606–3617 | Cite as

Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications

Research Article


The assembly of thin films (TFs) having long-lasting luminescence can be expected to play an important role in the development of new-generation smart sensors, anti-counterfeiting materials, and information-encryption systems. However, such films are limited compared with their powder and solution counterparts. In this study, by exploiting the self-organization of phosphors in the two-dimensional (2D) galleries between clay nanosheets, we developed a method for the ordered assembly of long-afterglow TFs by utilizing a hydrogen-bonding layer-by-layer (LBL) process. Compared with the pristine powder, the TFs exhibit high polarization and up-conversion room-temperature phosphorescence (RTP), as well as enhanced quantum yields and luminescence lifetimes, allowing them to be used as room-temperature phosphorescent sensors for humidity and oxygen. Moreover, modified clay-based hybrids with multicolor RTP can serve as anti-counterfeiting marks and triple-mode 2D barcode displays. We anticipate that the LBL assembly process can be extended to the fabrication of other inorganic–organic room-temperature phosphorescent hybrids with smart luminescent sensor and antiforgery applications.


layer-by-layer self-supporting thin film 2D ultrathin nanosheets sensor phosphorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (973 Program) (No. 2014CB932103), the National Natural Science Foundation of China (Nos. 21301016 and 21473013), the Beijing Municipal Natural Science Foundation (No. 2152016), and the Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2017_1571_MOESM1_ESM.pdf (1.8 mb)
Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications


  1. [1]
    Chan, J. C. H.; Lam, W. H.; Wong, H. L.; Wong, W. T.; Yam, V. W. W. Tunable photochromism in air-stable, robust dithienylethene-containing phospholes through modifications at the phosphorus center. Angew. Chem., Int. Ed. 2013, 52, 11504–11508.CrossRefGoogle Scholar
  2. [2]
    Yoon, J. Encoding optical signals. Angew. Chem., Int. Ed. 2014, 53, 6600–6601.CrossRefGoogle Scholar
  3. [3]
    Raymo, F. M.; Tomasulo, M. Electron and energy transfer modulation with photochromic switches. Chem. Soc. Rev. 2005, 34, 327–336.CrossRefGoogle Scholar
  4. [4]
    Yan, D. P.; Lu, J.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew. Chem., Int. Ed. 2011, 50, 720–723.CrossRefGoogle Scholar
  5. [5]
    Nakanotani, H.; Higuchi1, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 2014, 5, 4016.CrossRefGoogle Scholar
  6. [6]
    Mao, Z.; Yang, Z. Y.; Mu, Y. X.; Zhang, Y.; Wang, Y. F.; Chi, Z. G.; Lo, C. C.; Liu, S. W.; Lien, A.; Xu, J. R. Linearly tunable emission colors obtained from a fluorescentphosphorescent dual-emission compound by mechanical stimuli. Angew. Chem., Int. Ed. 2015, 54, 6270–6273.CrossRefGoogle Scholar
  7. [7]
    Koch, M.; Perumal, K.; Blacque, O.; Garg, J. A.; Saiganesh, R.; Kabilan, S.; Balasubramanian, K. K.; Venkatesan, K. Metalfree triplet phosphors with high emission efficiency and high tunability. Angew. Chem., Int. Ed. 2014, 53, 6378–6382.CrossRefGoogle Scholar
  8. [8]
    Xu, S.; Chen, R. F.; Zheng, C.; Huang, W. Excited state modulation for organic afterglow: Materials and applications. Adv. Mater. 2016, 28, 9920–9940.CrossRefGoogle Scholar
  9. [9]
    Yang, X. G.; Yan, D. P. Long-afterglow metal–organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci. 2016, 7, 4519–4526.CrossRefGoogle Scholar
  10. [10]
    Zhang, G. Q.; Chen, J. B.; Payne, S. J.; Kooi, S. E.; Demas, J. N.; Fraser, C. L. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 2007, 129, 8942–8943.CrossRefGoogle Scholar
  11. [11]
    Yang, Z. Y.; Mao, Z.; Zhang, X. P.; Ou, D. P.; Mu, Y. X.; Zhang, Y.; Zhao, C. Y.; Liu, S. W.; Chi, Z. G.; Xu, J. R. et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem., Int. Ed. 2016, 55, 2181–2185.CrossRefGoogle Scholar
  12. [12]
    Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231–7235.CrossRefGoogle Scholar
  13. [13]
    An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690.CrossRefGoogle Scholar
  14. [14]
    Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753.CrossRefGoogle Scholar
  15. [15]
    Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem., Int. Ed. 2014, 53, 11177–11181.CrossRefGoogle Scholar
  16. [16]
    Xue, P. C.; Sun, J. B.; Chen, P.; Wang, P. P.; Yao, B. Q.; Gong, P.; Zhang, Z. Q.; Lu, R. Luminescence switching of a persistent room-temperature phosphorescent pure organic molecule in response to external stimuli. Chem. Commun., 2015, 51, 10381–10384.CrossRefGoogle Scholar
  17. [17]
    Gong, Y. Y.; Zhao, L. F.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y. M.; Tang, B. Z. Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chem. Sci. 2015, 6, 4438–4444.CrossRefGoogle Scholar
  18. [18]
    Gao, R.; Yan, D. P. Layered host-guest long-afterglow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 2017, 8, 590–599.CrossRefGoogle Scholar
  19. [19]
    Chen, H.; Yao, X. Y.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 2016, 4, 1397–1401.CrossRefGoogle Scholar
  20. [20]
    Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “Giant” core/shell nanocrystal quantum dots. J. Am. Chem. Soc. 2012, 134, 9634–9643.CrossRefGoogle Scholar
  21. [21]
    Höppe, H. A. Recent developments in the field of inorganic phosphors. Angew. Chem., Int. Ed. 2009, 48, 3572–3582.CrossRefGoogle Scholar
  22. [22]
    Liu, W.; Fang, Y.; Wei, G. Z.; Teat, S. J.; Xiong, K. C.; Hu, Z. C.; Lustig, W. P.; Li, J. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 2015, 137, 9400–9408.CrossRefGoogle Scholar
  23. [23]
    Liao, Y. Z.; Strong, V.; Wang, Y.; Li, X. G.; Wang X.; Kaner, R. B. Oligotriphenylene nanofiber sensors for detection of nitro-based explosives. Adv. Funct. Mater. 2012, 22, 726–735.CrossRefGoogle Scholar
  24. [24]
    Esser, B.; Swager, T. M. Detection of ethylene gas by fluorescence turn-on of a conjugated polymer. Angew. Chem., Int. Ed. 2010, 49, 8872–8875.CrossRefGoogle Scholar
  25. [25]
    Xu, B. W.; Wu, X. F.; Li, H. B.; Tong, H.; Wang, L. X. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture. Macromolecules 2011, 44, 5089–5092.CrossRefGoogle Scholar
  26. [26]
    Zheng, Y. J.; Orbulescu, J.; Ji, X. J.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M. Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc. 2003, 125, 2680–2686.CrossRefGoogle Scholar
  27. [27]
    Gole, A.; Jana, N. R.; Selvan, S. T.; Ying, J. Y. Langmuir–Blodgett thin films of quantum dots: Synthesis, surface modification, and fluorescence resonance energy transfer (FRET) studies. Langmuir 2008, 24, 8181–8186.CrossRefGoogle Scholar
  28. [28]
    Li, X. Y.; Zhou, Y. L.; Zheng, Z. Z.; Yue, X. L.; Dai, Z. F.; Liu, S. Q.; Tang, Z. Y. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 2009, 25, 6580–6586.CrossRefGoogle Scholar
  29. [29]
    Ma, H. Y.; Gao, R.; Yan, D. P.; Zhao, J. W.; Wei, M. Organic–inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. J. Mater. Chem. C 2013, 1, 4128–4137.CrossRefGoogle Scholar
  30. [30]
    Yan, D. P.; Lu, J.; Wei, M.; Han, J. B.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-bylayer assembly. Angew. Chem., Int. Ed. 2009, 48, 3073–3076.CrossRefGoogle Scholar
  31. [31]
    Lee, D.; Bolton, O.; Kim, B. C.; Youk, J. H.; Takayama, S.; Kim, J. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. J. Am. Chem. Soc. 2013, 135, 6325–6329.CrossRefGoogle Scholar
  32. [32]
    Kabe, R.; Notsuka, N.; Yoshida, K.; Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 2016, 28, 655–660.CrossRefGoogle Scholar
  33. [33]
    Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 205–210.CrossRefGoogle Scholar
  34. [34]
    Bolton, O.; Lee, D.; Jung, J.; Kim, J. Tuning the photophysical properties of metal-free room temperature organic phosphors via compositional variations in bromobenzaldehyde/dibromobenzene mixed crystals. Chem. Mater. 2014, 26, 6644–6649.CrossRefGoogle Scholar
  35. [35]
    Gursky, J. A.; Blough, S. D.; Luna, C.; Gomez, C.; Luevano, A. N.; Gardner, E. A. Particle-particle interactions between layered double hydroxide nanoparticles. J. Am. Chem. Soc. 2006, 128, 8376–8377.CrossRefGoogle Scholar
  36. [36]
    Hagrman, P. J.; Hagrman, D.; Zubieta, J. Organic–inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem., Int. Ed. 1999, 38, 2638–2684.CrossRefGoogle Scholar
  37. [37]
    Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188–193.CrossRefGoogle Scholar
  38. [38]
    Cong, H. P.; Wang, P.; Yu, S. H. Stretchable and selfhealing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.CrossRefGoogle Scholar
  39. [39]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv. Funct. Mater. 2012, 22, 675–694.CrossRefGoogle Scholar
  40. [40]
    Ikeda, M.; Yoshii, T.; Matsui, T.; Tanida, T.; Komatsu, H.; Hamachi, I. Montmorillonite-supramolecular hydrogel hybrid for fluorocolorimetric sensing of polyamines. J. Am. Chem. Soc. 2011, 133, 1670–1673.CrossRefGoogle Scholar
  41. [41]
    Cheng, Q. F.; Wu, M. X.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 3750–3755.CrossRefGoogle Scholar
  42. [42]
    Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.CrossRefGoogle Scholar
  43. [43]
    Carja, G.; Grosu, E. F.; Petrarean, C.; Nichita, N. Selfassemblies of plasmonic gold/layered double hydroxides with highly efficient antiviral effect against the hepatitis B virus. Nano Res. 2015, 8, 3512–3523.CrossRefGoogle Scholar
  44. [44]
    Fogg, A. M.; Green, V. M.; Harvey, H. G.; O’Hare, D. New separation science using shape-selective ion exchange intercalation chemistry. Adv. Mater. 1999, 11, 1466–1469.CrossRefGoogle Scholar
  45. [45]
    Ma, R. Z.; Takada, K.; Fukuda, K.; Iyi, N.; Bando, Y.; Sasaki, T. Topochemical synthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angew. Chem., Int. Ed. 2008, 47, 86–89.CrossRefGoogle Scholar
  46. [46]
    Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2002, 112, 4124–4155.CrossRefGoogle Scholar
  47. [47]
    Li, Z. X.; Liang, R. Z.; Xu, S. M.; Liu W. D.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Multi-dimensional, lightcontrolled switch of fluorescence resonance energy transfer based on orderly assembly of 0D dye@micro-micelles and 2D ultrathin-layered nanosheets. Nano Res. 2016, 9, 3828–3838.CrossRefGoogle Scholar
  48. [48]
    Yan, D. P.; Lu, J.; Ma, J.; Qin, S. H.; Wei, M.; Evans, D. G.; Duan, X. Layered host–guest materials with reversible piezochromic luminescence. Angew. Chem., Int. Ed. 2011, 50, 7037–7040.CrossRefGoogle Scholar
  49. [49]
    Tian, R.; Zhang, S. T.; Li, M. W.; Zhou, Y. Q.; Lu, B.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Localization of Au nanoclusters on layered double hydroxides nanosheets: Confinement-induced emission enhancement and temperatureresponsive luminescence. Adv. Funct. Mater. 2015, 25, 5006–5015.CrossRefGoogle Scholar
  50. [50]
    Yan, D. P.; Lu, J.; Wei, M.; Qin, S. H.; Chen, L.; Zhang, S. T.; Evans, D. G.; Duan, X. Heterogeneous transparent ultrathin films with tunable-color luminescence based on the assembly of photoactive organic molecules and layered double hydroxides. Adv. Funct. Mater. 2011, 21, 2497–2505.CrossRefGoogle Scholar
  51. [51]
    Chen, J.; Hurtubise, R. J. Infrared study of the interactions of moisture with filter paper and the moisture quenching of solid-matrix room temperature phosphorescence. Anal. Chim. Acta 1996, 324, 61–68.CrossRefGoogle Scholar
  52. [52]
    Citta, L. A.; Hurtubise, R. J. The effects of moisture and gases on the room-temperature fluorescence and phosphorescence of model aromatic compounds adsorbed on filter paper. Appl. Spectrosc. 1991, 45, 1547–1552.CrossRefGoogle Scholar
  53. [53]
    Gao, R.; Cao, D.; Guan, Y.; Yan, D. P. Fast and reversible humidity-responsive luminescent thin films. Ind. Eng. Chem. Res. 2016, 55, 125–132.CrossRefGoogle Scholar
  54. [54]
    Li, L.; Ma, R. Z.; Ebina, Y.; Iyi, N.; Sasaki, T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 2005, 17, 4386–4391.CrossRefGoogle Scholar
  55. [55]
    Dou, Y. B.; Pan, T.; Xu, S. M.; Yan, H.; Han, J. B.; Wei, M.; Evans, D. G.; Duan, X. Transparent, ultrahigh-gas-barrier films with a brick-mortar-sand structure. Angew. Chem., Int. Ed. 2015, 54, 9673–9678.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rui Gao
    • 1
  • Dongpeng Yan
    • 1
    • 2
  • David G. Evans
    • 1
  • Xue Duan
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations