Nano Research

, Volume 10, Issue 10, pp 3606–3617 | Cite as

Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications

Research Article
  • 60 Downloads

Abstract

The assembly of thin films (TFs) having long-lasting luminescence can be expected to play an important role in the development of new-generation smart sensors, anti-counterfeiting materials, and information-encryption systems. However, such films are limited compared with their powder and solution counterparts. In this study, by exploiting the self-organization of phosphors in the two-dimensional (2D) galleries between clay nanosheets, we developed a method for the ordered assembly of long-afterglow TFs by utilizing a hydrogen-bonding layer-by-layer (LBL) process. Compared with the pristine powder, the TFs exhibit high polarization and up-conversion room-temperature phosphorescence (RTP), as well as enhanced quantum yields and luminescence lifetimes, allowing them to be used as room-temperature phosphorescent sensors for humidity and oxygen. Moreover, modified clay-based hybrids with multicolor RTP can serve as anti-counterfeiting marks and triple-mode 2D barcode displays. We anticipate that the LBL assembly process can be extended to the fabrication of other inorganic–organic room-temperature phosphorescent hybrids with smart luminescent sensor and antiforgery applications.

Keywords

layer-by-layer self-supporting thin film 2D ultrathin nanosheets sensor phosphorescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1571_MOESM1_ESM.pdf (1.8 mb)
Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications

References

  1. [1]
    Chan, J. C. H.; Lam, W. H.; Wong, H. L.; Wong, W. T.; Yam, V. W. W. Tunable photochromism in air-stable, robust dithienylethene-containing phospholes through modifications at the phosphorus center. Angew. Chem., Int. Ed. 2013, 52, 11504–11508.CrossRefGoogle Scholar
  2. [2]
    Yoon, J. Encoding optical signals. Angew. Chem., Int. Ed. 2014, 53, 6600–6601.CrossRefGoogle Scholar
  3. [3]
    Raymo, F. M.; Tomasulo, M. Electron and energy transfer modulation with photochromic switches. Chem. Soc. Rev. 2005, 34, 327–336.CrossRefGoogle Scholar
  4. [4]
    Yan, D. P.; Lu, J.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew. Chem., Int. Ed. 2011, 50, 720–723.CrossRefGoogle Scholar
  5. [5]
    Nakanotani, H.; Higuchi1, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 2014, 5, 4016.CrossRefGoogle Scholar
  6. [6]
    Mao, Z.; Yang, Z. Y.; Mu, Y. X.; Zhang, Y.; Wang, Y. F.; Chi, Z. G.; Lo, C. C.; Liu, S. W.; Lien, A.; Xu, J. R. Linearly tunable emission colors obtained from a fluorescentphosphorescent dual-emission compound by mechanical stimuli. Angew. Chem., Int. Ed. 2015, 54, 6270–6273.CrossRefGoogle Scholar
  7. [7]
    Koch, M.; Perumal, K.; Blacque, O.; Garg, J. A.; Saiganesh, R.; Kabilan, S.; Balasubramanian, K. K.; Venkatesan, K. Metalfree triplet phosphors with high emission efficiency and high tunability. Angew. Chem., Int. Ed. 2014, 53, 6378–6382.CrossRefGoogle Scholar
  8. [8]
    Xu, S.; Chen, R. F.; Zheng, C.; Huang, W. Excited state modulation for organic afterglow: Materials and applications. Adv. Mater. 2016, 28, 9920–9940.CrossRefGoogle Scholar
  9. [9]
    Yang, X. G.; Yan, D. P. Long-afterglow metal–organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci. 2016, 7, 4519–4526.CrossRefGoogle Scholar
  10. [10]
    Zhang, G. Q.; Chen, J. B.; Payne, S. J.; Kooi, S. E.; Demas, J. N.; Fraser, C. L. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 2007, 129, 8942–8943.CrossRefGoogle Scholar
  11. [11]
    Yang, Z. Y.; Mao, Z.; Zhang, X. P.; Ou, D. P.; Mu, Y. X.; Zhang, Y.; Zhao, C. Y.; Liu, S. W.; Chi, Z. G.; Xu, J. R. et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem., Int. Ed. 2016, 55, 2181–2185.CrossRefGoogle Scholar
  12. [12]
    Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231–7235.CrossRefGoogle Scholar
  13. [13]
    An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690.CrossRefGoogle Scholar
  14. [14]
    Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753.CrossRefGoogle Scholar
  15. [15]
    Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem., Int. Ed. 2014, 53, 11177–11181.CrossRefGoogle Scholar
  16. [16]
    Xue, P. C.; Sun, J. B.; Chen, P.; Wang, P. P.; Yao, B. Q.; Gong, P.; Zhang, Z. Q.; Lu, R. Luminescence switching of a persistent room-temperature phosphorescent pure organic molecule in response to external stimuli. Chem. Commun., 2015, 51, 10381–10384.CrossRefGoogle Scholar
  17. [17]
    Gong, Y. Y.; Zhao, L. F.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y. M.; Tang, B. Z. Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chem. Sci. 2015, 6, 4438–4444.CrossRefGoogle Scholar
  18. [18]
    Gao, R.; Yan, D. P. Layered host-guest long-afterglow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 2017, 8, 590–599.CrossRefGoogle Scholar
  19. [19]
    Chen, H.; Yao, X. Y.; Ma, X.; Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 2016, 4, 1397–1401.CrossRefGoogle Scholar
  20. [20]
    Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “Giant” core/shell nanocrystal quantum dots. J. Am. Chem. Soc. 2012, 134, 9634–9643.CrossRefGoogle Scholar
  21. [21]
    Höppe, H. A. Recent developments in the field of inorganic phosphors. Angew. Chem., Int. Ed. 2009, 48, 3572–3582.CrossRefGoogle Scholar
  22. [22]
    Liu, W.; Fang, Y.; Wei, G. Z.; Teat, S. J.; Xiong, K. C.; Hu, Z. C.; Lustig, W. P.; Li, J. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 2015, 137, 9400–9408.CrossRefGoogle Scholar
  23. [23]
    Liao, Y. Z.; Strong, V.; Wang, Y.; Li, X. G.; Wang X.; Kaner, R. B. Oligotriphenylene nanofiber sensors for detection of nitro-based explosives. Adv. Funct. Mater. 2012, 22, 726–735.CrossRefGoogle Scholar
  24. [24]
    Esser, B.; Swager, T. M. Detection of ethylene gas by fluorescence turn-on of a conjugated polymer. Angew. Chem., Int. Ed. 2010, 49, 8872–8875.CrossRefGoogle Scholar
  25. [25]
    Xu, B. W.; Wu, X. F.; Li, H. B.; Tong, H.; Wang, L. X. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture. Macromolecules 2011, 44, 5089–5092.CrossRefGoogle Scholar
  26. [26]
    Zheng, Y. J.; Orbulescu, J.; Ji, X. J.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M. Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc. 2003, 125, 2680–2686.CrossRefGoogle Scholar
  27. [27]
    Gole, A.; Jana, N. R.; Selvan, S. T.; Ying, J. Y. Langmuir–Blodgett thin films of quantum dots: Synthesis, surface modification, and fluorescence resonance energy transfer (FRET) studies. Langmuir 2008, 24, 8181–8186.CrossRefGoogle Scholar
  28. [28]
    Li, X. Y.; Zhou, Y. L.; Zheng, Z. Z.; Yue, X. L.; Dai, Z. F.; Liu, S. Q.; Tang, Z. Y. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 2009, 25, 6580–6586.CrossRefGoogle Scholar
  29. [29]
    Ma, H. Y.; Gao, R.; Yan, D. P.; Zhao, J. W.; Wei, M. Organic–inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. J. Mater. Chem. C 2013, 1, 4128–4137.CrossRefGoogle Scholar
  30. [30]
    Yan, D. P.; Lu, J.; Wei, M.; Han, J. B.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-bylayer assembly. Angew. Chem., Int. Ed. 2009, 48, 3073–3076.CrossRefGoogle Scholar
  31. [31]
    Lee, D.; Bolton, O.; Kim, B. C.; Youk, J. H.; Takayama, S.; Kim, J. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. J. Am. Chem. Soc. 2013, 135, 6325–6329.CrossRefGoogle Scholar
  32. [32]
    Kabe, R.; Notsuka, N.; Yoshida, K.; Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 2016, 28, 655–660.CrossRefGoogle Scholar
  33. [33]
    Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 2011, 3, 205–210.CrossRefGoogle Scholar
  34. [34]
    Bolton, O.; Lee, D.; Jung, J.; Kim, J. Tuning the photophysical properties of metal-free room temperature organic phosphors via compositional variations in bromobenzaldehyde/dibromobenzene mixed crystals. Chem. Mater. 2014, 26, 6644–6649.CrossRefGoogle Scholar
  35. [35]
    Gursky, J. A.; Blough, S. D.; Luna, C.; Gomez, C.; Luevano, A. N.; Gardner, E. A. Particle-particle interactions between layered double hydroxide nanoparticles. J. Am. Chem. Soc. 2006, 128, 8376–8377.CrossRefGoogle Scholar
  36. [36]
    Hagrman, P. J.; Hagrman, D.; Zubieta, J. Organic–inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem., Int. Ed. 1999, 38, 2638–2684.CrossRefGoogle Scholar
  37. [37]
    Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188–193.CrossRefGoogle Scholar
  38. [38]
    Cong, H. P.; Wang, P.; Yu, S. H. Stretchable and selfhealing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.CrossRefGoogle Scholar
  39. [39]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv. Funct. Mater. 2012, 22, 675–694.CrossRefGoogle Scholar
  40. [40]
    Ikeda, M.; Yoshii, T.; Matsui, T.; Tanida, T.; Komatsu, H.; Hamachi, I. Montmorillonite-supramolecular hydrogel hybrid for fluorocolorimetric sensing of polyamines. J. Am. Chem. Soc. 2011, 133, 1670–1673.CrossRefGoogle Scholar
  41. [41]
    Cheng, Q. F.; Wu, M. X.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 3750–3755.CrossRefGoogle Scholar
  42. [42]
    Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.CrossRefGoogle Scholar
  43. [43]
    Carja, G.; Grosu, E. F.; Petrarean, C.; Nichita, N. Selfassemblies of plasmonic gold/layered double hydroxides with highly efficient antiviral effect against the hepatitis B virus. Nano Res. 2015, 8, 3512–3523.CrossRefGoogle Scholar
  44. [44]
    Fogg, A. M.; Green, V. M.; Harvey, H. G.; O’Hare, D. New separation science using shape-selective ion exchange intercalation chemistry. Adv. Mater. 1999, 11, 1466–1469.CrossRefGoogle Scholar
  45. [45]
    Ma, R. Z.; Takada, K.; Fukuda, K.; Iyi, N.; Bando, Y.; Sasaki, T. Topochemical synthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angew. Chem., Int. Ed. 2008, 47, 86–89.CrossRefGoogle Scholar
  46. [46]
    Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2002, 112, 4124–4155.CrossRefGoogle Scholar
  47. [47]
    Li, Z. X.; Liang, R. Z.; Xu, S. M.; Liu W. D.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Multi-dimensional, lightcontrolled switch of fluorescence resonance energy transfer based on orderly assembly of 0D dye@micro-micelles and 2D ultrathin-layered nanosheets. Nano Res. 2016, 9, 3828–3838.CrossRefGoogle Scholar
  48. [48]
    Yan, D. P.; Lu, J.; Ma, J.; Qin, S. H.; Wei, M.; Evans, D. G.; Duan, X. Layered host–guest materials with reversible piezochromic luminescence. Angew. Chem., Int. Ed. 2011, 50, 7037–7040.CrossRefGoogle Scholar
  49. [49]
    Tian, R.; Zhang, S. T.; Li, M. W.; Zhou, Y. Q.; Lu, B.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Localization of Au nanoclusters on layered double hydroxides nanosheets: Confinement-induced emission enhancement and temperatureresponsive luminescence. Adv. Funct. Mater. 2015, 25, 5006–5015.CrossRefGoogle Scholar
  50. [50]
    Yan, D. P.; Lu, J.; Wei, M.; Qin, S. H.; Chen, L.; Zhang, S. T.; Evans, D. G.; Duan, X. Heterogeneous transparent ultrathin films with tunable-color luminescence based on the assembly of photoactive organic molecules and layered double hydroxides. Adv. Funct. Mater. 2011, 21, 2497–2505.CrossRefGoogle Scholar
  51. [51]
    Chen, J.; Hurtubise, R. J. Infrared study of the interactions of moisture with filter paper and the moisture quenching of solid-matrix room temperature phosphorescence. Anal. Chim. Acta 1996, 324, 61–68.CrossRefGoogle Scholar
  52. [52]
    Citta, L. A.; Hurtubise, R. J. The effects of moisture and gases on the room-temperature fluorescence and phosphorescence of model aromatic compounds adsorbed on filter paper. Appl. Spectrosc. 1991, 45, 1547–1552.CrossRefGoogle Scholar
  53. [53]
    Gao, R.; Cao, D.; Guan, Y.; Yan, D. P. Fast and reversible humidity-responsive luminescent thin films. Ind. Eng. Chem. Res. 2016, 55, 125–132.CrossRefGoogle Scholar
  54. [54]
    Li, L.; Ma, R. Z.; Ebina, Y.; Iyi, N.; Sasaki, T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 2005, 17, 4386–4391.CrossRefGoogle Scholar
  55. [55]
    Dou, Y. B.; Pan, T.; Xu, S. M.; Yan, H.; Han, J. B.; Wei, M.; Evans, D. G.; Duan, X. Transparent, ultrahigh-gas-barrier films with a brick-mortar-sand structure. Angew. Chem., Int. Ed. 2015, 54, 9673–9678.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rui Gao
    • 1
  • Dongpeng Yan
    • 1
    • 2
  • David G. Evans
    • 1
  • Xue Duan
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations