Nano Research

, Volume 10, Issue 10, pp 3596–3605 | Cite as

Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements

  • David M. A. Mackenzie
  • Jonas D. Buron
  • Patrick R. Whelan
  • José M. Caridad
  • Martin Bjergfelt
  • Birong Luo
  • Abhay Shivayogimath
  • Anne L. Smitshuysen
  • Joachim D. Thomsen
  • Timothy J. Booth
  • Lene Gammelgaard
  • Johanna Zultak
  • Bjarke S. Jessen
  • Peter Bøggild
  • Dirch H. Petersen
Research Article
  • 65 Downloads

Abstract

With the increasing availability of large-area graphene, the ability to rapidly and accurately assess the quality of the electrical properties has become critically important. For practical applications, spatial variability in carrier density and carrier mobility must be controlled and minimized. We present a simple framework for assessing the quality and homogeneity of large-area graphene devices. The field effect in both exfoliated graphene devices encapsulated in hexagonal boron nitride and chemical vapor-deposited (CVD) devices was measured in dual current–voltage configurations and used to derive a single, gate-dependent effective shape factor, β, for each device. β is a sensitive indicator of spatial homogeneity that can be obtained from samples of arbitrary shape. All 50 devices investigated in this study show a variation (up to tenfold) in β as a function of the gate bias. Finite element simulations suggest that spatial doping inhomogeneity, rather than mobility inhomogeneity, is the primary cause of the gate dependence of β, and that measurable variations of β can be caused by doping variations as small as 1010 cm−2. Our results suggest that local variations in the position of the Dirac point alter the current flow and thus the effective sample shape as a function of the gate bias. We also found that such variations lead to systematic errors in carrier mobility calculations, which can be revealed by inspecting the corresponding β factor.

Keywords

CVD graphene doping inhomogeneity electrical measurements van der Pauw hBN-encapsulated graphene finite element simulations Raman mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1570_MOESM1_ESM.pdf (1.7 mb)
Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements

References

  1. [1]
    Pizzocchero, F.; Jessen, B. S.; Whelan, P. R.; Kostesha, N.; Lee, S.; Buron, J. D.; Petrushina, I.; Larsen, M. B.; Greenwood, P.; Cha, W. J. et al. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon 2015, 85, 397–405.CrossRefGoogle Scholar
  2. [2]
    Mackenzie, D. M. A.; Cagliani, A.; Gammelgaard, L.; Jessen, B. S.; Petersen, D. H.; Bøggild, P. Graphene antidot lattice transport measurements. Int. J. Nanotechnol. 2017, 14, 226–234.CrossRefGoogle Scholar
  3. [3]
    Klarskov, M. B.; Dam, H. F.; Petersen, D. H.; Hansen, T. M.; Lö wenborg, A.; Booth, T. J.; Schmidt, M. S.; Lin, R.; Nielsen, P. F.; Bøggild, P. Fast and direct measurements of the electrical properties of graphene using micro four-point probes. Nanotechnology 2011, 22, 445702.CrossRefGoogle Scholar
  4. [4]
    Buron, J. D.; Mackenzie, D. M. A.; Petersen, D. H.; Pesquera, A.; Centeno, A.; Bøggild, P.; Zurutuza, A.; Jepsen, P. U. Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate. Opt. Express 2015, 23, 30721–30729.CrossRefGoogle Scholar
  5. [5]
    Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.CrossRefGoogle Scholar
  6. [6]
    Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, W. F.; Samir, A.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.CrossRefGoogle Scholar
  7. [7]
    Wang, R. Z.; Whelan, P. R.; Braeuninger-Weimer, P.; Tappertzhofen, S.; Alexander-Webber, J. A.; Van Veldhoven, Z. A.; Kidambi, P. R.; Jessen, B. S.; Booth, T.; Bøggild, P. et al. Catalyst interface engineering for improved 2D film lift-off and transfer. ACS Appl. Mater. Interfaces 2016, 8, 33072–33082.CrossRefGoogle Scholar
  8. [8]
    Mackenzie, D. M. A.; Buron, J. D.; Whelan, P. R.; Jessen, B. S.; Silajdźić, A.; Pesquera, A.; Centeno, A.; Zurutuza, A.; Bøggild, P.; Petersen, D. H. Fabrication of CVD graphenebased devices via laser ablation for wafer-scale characterization. 2D Mater. 2015, 2, 045003.CrossRefGoogle Scholar
  9. [9]
    Mackenzie, D. M. A.; Buron, J. D.; Bøggild, P.; Jepsen, P. U.; Petersen, D. H. Contactless graphene conductance measurements: The effect of device fabrication on terahertz timedomain spectroscopy. Int. J. Nanotechnol. 2016, 13, 591–596.CrossRefGoogle Scholar
  10. [10]
    Pizzocchero, F.; Gammelgaard, L.; Jessen, B. S.; Caridad, J. M.; Wang, L.; Hone, J.; Bøggild, P.; Booth, T. J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 2016, 7, 11894.CrossRefGoogle Scholar
  11. [11]
    Larsen, M. B. B. S.; Mackenzie, D. M. A.; Caridad, J. M.; Bøggild, P.; Booth, T. J. Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping. Microelectron. Eng. 2014, 121, 113–117.CrossRefGoogle Scholar
  12. [12]
    van der Pauw, L. J. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev. 1958, 20, 220–224.Google Scholar
  13. [13]
    Gammelgaard, L.; Caridad, J. M.; Cagliani, A.; Mackenzie, D. M. A.; Petersen, D. H.; Booth, T. J.; Bøggild, P. Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Mater. 2014, 1, 035005.CrossRefGoogle Scholar
  14. [14]
    Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.CrossRefGoogle Scholar
  15. [15]
    Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470.CrossRefGoogle Scholar
  16. [16]
    Lotz, M. R.; Boll, M.; Hansen, O.; Kjær, D.; Bøggild, P.; Petersen, D. H. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials. Appl. Phys. Lett. 2014, 105, 053115.CrossRefGoogle Scholar
  17. [17]
    Lotz, M. R.; Boll, M.; Østerberg, F. W.; Hansen, O.; Petersen, D. H. Mesoscopic current transport in two-dimensional materials with grain boundaries: Four-point probe resistance and Hall effect. Appl. Phys. Lett. 2016, 120, 134303.Google Scholar
  18. [18]
    Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108.CrossRefGoogle Scholar
  19. [19]
    Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.CrossRefGoogle Scholar
  20. [20]
    Cagliani, A.; Mackenzie, D. M. A.; Tschammer, L. K.; Pizzocchero, F.; Almdal, K.; Bøggild, P. Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Res. 2014, 7, 743–754.CrossRefGoogle Scholar
  21. [21]
    Hinnefeld, J. H.; Gill, S. T.; Zhu, S. Z.; Swanson, W. J.; Li, T.; Mason, N. Reversible mechanical and electrical properties of ripped graphene. Phys. Rev. Appl. 2015, 3, 014010.CrossRefGoogle Scholar
  22. [22]
    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.CrossRefGoogle Scholar
  23. [23]
    Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H. W.; Fang, L.; Gong, J. R. Controllable N-doping of graphene. Nano Lett. 2010, 10, 4975–4980.CrossRefGoogle Scholar
  24. [24]
    Buron, J. D.; Pizzocchero, F.; Jepsen, P. U.; Petersen, D. H.; Caridad, J. M.; Jessen, B. S.; Booth, T. J.; Bøggild, P. Graphene mobility mapping. Sci. Rep. 2015, 5, 12305.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • David M. A. Mackenzie
    • 1
    • 2
  • Jonas D. Buron
    • 1
    • 2
  • Patrick R. Whelan
    • 1
    • 2
  • José M. Caridad
    • 1
    • 2
  • Martin Bjergfelt
    • 1
    • 2
  • Birong Luo
    • 1
    • 2
  • Abhay Shivayogimath
    • 1
    • 2
  • Anne L. Smitshuysen
    • 1
    • 2
  • Joachim D. Thomsen
    • 1
    • 2
  • Timothy J. Booth
    • 1
    • 2
  • Lene Gammelgaard
    • 1
    • 2
  • Johanna Zultak
    • 1
    • 2
  • Bjarke S. Jessen
    • 1
    • 2
  • Peter Bøggild
    • 1
    • 2
  • Dirch H. Petersen
    • 1
    • 2
  1. 1.Department of Micro- and NanotechnologyTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Center for Nanostructured Graphene (CNG)Technical University of DenmarkKongens LyngbyDenmark

Personalised recommendations