Nano Research

, Volume 10, Issue 10, pp 3585–3595 | Cite as

NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells

Research Article


NaFeTiO4 nanorods of high yields (with diameters in the range of 30–50 nm and lengths of up to 1–5 μm) were synthesized by a facile sol–gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA·h·g−1 at 0.2 C (1 C = 177 mA·g–1), and remain at 115 mA·h·g–1 after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/ MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA·h·g–1 at 0.2 C after 50 cycles, and remains at 125 mA·h·g–1 at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)3/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA·h·g−1 after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs.


nanorods sodium-ion batteries multi-walled carbon nanotubes full cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1569_MOESM1_ESM.pdf (3.6 mb)
NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells


  1. [1]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Eng. Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  2. [2]
    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.CrossRefGoogle Scholar
  3. [3]
    Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.CrossRefGoogle Scholar
  4. [4]
    later, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.CrossRefGoogle Scholar
  5. [5]
    Thomas, P.; Ghanbaja, J.; Billaud, D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte. Electrochim. Acta 1999, 45, 423–430.CrossRefGoogle Scholar
  6. [6]
    Asher, R. C.; Wilson, S. A. Lamellar compound of sodium with graphite. Nature 1958, 181, 409–410.CrossRefGoogle Scholar
  7. [7]
    Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 2013, 1, 7181–7184.CrossRefGoogle Scholar
  8. [8]
    Darwiche, A.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries. Electrochem. Commun. 2013, 32, 18–21.CrossRefGoogle Scholar
  9. [9]
    Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.CrossRefGoogle Scholar
  10. [10]
    Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.CrossRefGoogle Scholar
  11. [11]
    Li, A. H.; Xu, L. Q.; Li, S. L.; He, Y. Y.; Zhang, R. R.; Zhai, Y. J. One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 2015, 8, 554–565.CrossRefGoogle Scholar
  12. [12]
    Obrovac, M. N.; Christensen, L.; Le, D. B.; Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 2007, 154, A849–A855.CrossRefGoogle Scholar
  13. [13]
    Bi, Z. H.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M. F.; Guo, B. K.; Sun, X. G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 2013, 222, 461–466.CrossRefGoogle Scholar
  14. [14]
    Zhang, H.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y. Electrochemical lithium storage of sodium titanate nanotubes and nanorods. Electrochim. Acta 2008, 53, 7061–7068.CrossRefGoogle Scholar
  15. [15]
    Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. et al. Direct atomicscale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870.CrossRefGoogle Scholar
  16. [16]
    Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacín, M. R. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109–4111.CrossRefGoogle Scholar
  17. [17]
    Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: An intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A 2013, 1, 2653–2662.CrossRefGoogle Scholar
  18. [18]
    Wang, W.; Yu, C. J.; Lin, Z. S.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. Microspheric Na2Ti3O7 consisting of tiny nanotubes: An anode material for sodium-ion batteries with ultrafast charge–discharge rates. Nanoscale 2013, 5, 594–599.CrossRefGoogle Scholar
  19. [19]
    Yan, Z. C.; Liu, L.; Shu, H. B.; Yang, X. K.; Wang, H.; Tan, J. L.; Zhou, Q.; Huang, Z. F.; Wang, X. Y. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 2015, 274, 8–14.CrossRefGoogle Scholar
  20. [20]
    Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Na2Ti6O13: A potential anode for grid-storage sodium-ion batteries. Chem. Commun. 2013, 49, 7451–7453.CrossRefGoogle Scholar
  21. [21]
    Kim, D.; Lee, E.; Slater, M.; Lu, W. Q.; Rood, S.; Johnson, C. S. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 2012, 18, 66–69.CrossRefGoogle Scholar
  22. [22]
    Yuan, D. D.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim. Acta 2014, 116, 300–305.CrossRefGoogle Scholar
  23. [23]
    Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.CrossRefGoogle Scholar
  24. [24]
    Wang, J.; Qiu, B.; He, X.; Risthaus, T.; Liu, H. D.; Stan, M. C.; Schulze, S.; Xia, Y. G.; Liu, Z. P.; Winter, M. et al. Low-cost orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) compounds as anode materials for sodium-ion batteries. Chem. Mater. 2015, 27, 4374–4379.CrossRefGoogle Scholar
  25. [25]
    Duan, W. C.; Zhu, Z. Q.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Chen, J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675.CrossRefGoogle Scholar
  26. [26]
    Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Iron–tin oxides with CaFe2O4 structure as anodes for Li-ion batteries. J. Power Sources 2003, 124, 204–212.CrossRefGoogle Scholar
  27. [27]
    Sharma, N.; Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim. Acta 2004, 49, 1035–1043.CrossRefGoogle Scholar
  28. [28]
    Archaimbault, F.; Odier, P.; Choisnet, J. Non-stoichiometric compounds with a defect CaFe2O4 structure: The mixed ferrites Ca1-x 2Fe2-xSnxO4 and Ca1-(x+y) 2LiyFe2-xO4. Solid State Ion. 1988, 28-30, 1357–1363.CrossRefGoogle Scholar
  29. [29]
    Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.CrossRefGoogle Scholar
  30. [30]
    Li, H.; Fei, H. L.; Liu, X.; Yang, J.; Wei, M. D. In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem. Commun. 2015, 51, 9298–9300.CrossRefGoogle Scholar
  31. [31]
    Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.CrossRefGoogle Scholar
  32. [32]
    Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975.CrossRefGoogle Scholar
  33. [33]
    Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.CrossRefGoogle Scholar
  34. [34]
    Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.CrossRefGoogle Scholar
  35. [35]
    Na, Z. L.; Huang, G.; Liang, F.; Yin, D. M.; Wang, L. M. A core–shell Fe/Fe2O3 nanowire as a high-performance anode material for lithium-ion batteries. Chem.—Eur. J. 2016, 22, 12081–12087.CrossRefGoogle Scholar
  36. [36]
    Fu, Y. Q.; Wei, Q. L.; Wang, X. Y.; Zhang, G. X.; Shu, H. B.; Yang, X. K.; Tavares, A. C.; Sun, S. H. A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries. RSC Adv. 2016, 6, 16624–16633.CrossRefGoogle Scholar
  37. [37]
    Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.CrossRefGoogle Scholar
  38. [38]
    Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as highperformance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.CrossRefGoogle Scholar
  39. [39]
    Sheng, J. Z.; Zang, H.; Tang, C. J.; An, Q. Y.; Wei, Q. L.; Zhang, G. B.; Chen, L. N.; Peng, C.; Mai, L. Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy 2016, 24, 130–138.CrossRefGoogle Scholar
  40. [40]
    Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.CrossRefGoogle Scholar
  41. [41]
    Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.CrossRefGoogle Scholar
  42. [42]
    El Mendili, Y.; Bardeau, J. F.; Randrianantoandro, N.; Gourbil, A.; Greneche, J. M.; Mercier, A. M.; Grasset, F. New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: A Raman spectroscopic study. J. Raman Spectrosc. 2011, 42, 239–242.CrossRefGoogle Scholar
  43. [43]
    Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithiumsulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.CrossRefGoogle Scholar
  44. [44]
    Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161.CrossRefGoogle Scholar
  45. [45]
    Xiao, P.; Zheng, S. B.; You, J. L.; Jiang, G. C.; Chen, H.; Zeng, H. Structure and Raman spectra of titanium oxides. Spectrosc. Spect. Anal. 2007, 27, 936–939.Google Scholar
  46. [46]
    Jang, J.; Yoon, H. Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Adv. Mater. 2003, 15, 2088–2091.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Colloid & Interface Chemistry (Shandong University), Ministry of Education and School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations