Nano Research

, Volume 10, Issue 10, pp 3571–3584 | Cite as

Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition

  • Ankur Goswami
  • Priyesh Dhandaria
  • Soupitak Pal
  • Ryan McGee
  • Faheem Khan
  • Željka Antić
  • Ravi Gaikwad
  • Kovur Prashanthi
  • Thomas Thundat
Research Article
  • 75 Downloads

Abstract

This study reports on the mid-infrared (mid-IR) photothermal response of multilayer MoS2 thin films grown on crystalline (p-type silicon and c-axis-oriented single crystal sapphire) and amorphous (Si/SiO2 and Si/SiN) substrates by pulsed laser deposition (PLD). The photothermal response of the MoS2 films is measured as the changes in the resistance of the MoS2 films when irradiated with a mid-IR (7 to 8.2 μm) source. We show that enhancing the temperature coefficient of resistance (TCR) of the MoS2 thin films is possible by controlling the film-substrate interface through a proper choice of substrate and growth conditions. The thin films grown by PLD are characterized using X-ray diffraction, Raman, atomic force microscopy, X-ray photoelectron microscopy, and transmission electron microscopy. The high-resolution transmission electron microscopy (HRTEM) images show that the MoS2 films grow on sapphire substrates in a layer-by-layer manner with misfit dislocations. The layer growth morphology is disrupted when the films are grown on substrates with a diamond cubic structure (e.g., silicon) because of twin growth formation. The growth morphology on amorphous substrates, such as Si/SiO2 or Si/SiN, is very different. The PLD-grown MoS2 films on silicon show higher TCR (−2.9% K−1 at 296 K), higher mid-IR sensitivity (ΔR/R = 5.2%), and higher responsivity (8.7 V·W–1) compared to both the PLD-grown films on other substrates and the mechanically exfoliated MoS2 flakes transferred to different substrates.

Keywords

MoS2 pulsed laser deposition photothermal effect infrared (IR) detector interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1568_MOESM1_ESM.pdf (3.7 mb)
Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition

References

  1. [1]
    Yazyev, O. V.; Kis, A. MoS2 and semiconductors in the flatland. Mater. Today 2015, 18, 20–30.CrossRefGoogle Scholar
  2. [2]
    Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.CrossRefGoogle Scholar
  3. [3]
    Sorkin, V.; Pan, H.; Shi, H.; Quek, S. Y.; Zhang, Y. W. Nanoscale transition metal dichalcogenides: Structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 2014, 39, 319–367.CrossRefGoogle Scholar
  4. [4]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  5. [5]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.CrossRefGoogle Scholar
  6. [6]
    Klinovaja, J.; Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 2013, 88, 075404.CrossRefGoogle Scholar
  7. [7]
    Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.CrossRefGoogle Scholar
  8. [8]
    Serrao, C. R.; Diamond, A. M.; Hsu, S. L.; You, L.; Gadgil, S.; Clarkson, J.; Carraro, C.; Maboudian, R.; Hu, C. M.; Salahuddin, S. Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 2015, 106, 052101.CrossRefGoogle Scholar
  9. [9]
    El-Mahalawy, S. H.; Evans, B. L. Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. Phys. Status Solidi B 1977, 79, 713–722.CrossRefGoogle Scholar
  10. [10]
    Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.CrossRefGoogle Scholar
  11. [11]
    Kallatt, S.; Umesh, G.; Bhat, N.; Majumdar, K. Photoresponse of atomically thin MoS2 layers and their planar heterojunctions. Nanoscale 2016, 8, 15213–15222.CrossRefGoogle Scholar
  12. [12]
    Late, D. J.; Shaikh, P. A.; Khare, R.; Kashid, R. V.; Chaudhary, M.; More, M. A.; Ogale, S. B. Pulsed laser-deposited MoS2 thin films on W and Si: Field emission and photoresponse studies. ACS Appl. Mater. Interfaces 2014, 6, 15881–15888.CrossRefGoogle Scholar
  13. [13]
    Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thinlayered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.CrossRefGoogle Scholar
  14. [14]
    Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.CrossRefGoogle Scholar
  15. [15]
    Zhou, Y. L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.CrossRefGoogle Scholar
  16. [16]
    Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 2015, 8, 281–287.CrossRefGoogle Scholar
  17. [17]
    Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B.Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.CrossRefGoogle Scholar
  18. [18]
    Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.CrossRefGoogle Scholar
  19. [19]
    Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267–2336.CrossRefGoogle Scholar
  20. [20]
    Rogalski, A. Infrared detectors: Status and trends. Prog. Quant. Electron. 2003, 27, 59–210.CrossRefGoogle Scholar
  21. [21]
    Eng, P.C.; Song, S.; Ping, B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics 2015, 4, 277–302.CrossRefGoogle Scholar
  22. [22]
    Kumar, R. T. R.; Karunagaran, B.; Mangalaraj, D.; Narayandass, S. K.; Manoravi, P.; Joseph, M.; Gopal, V.; Madaria, R. K.; Singh, J. P. Room temperature deposited vanadium oxide thin films for uncooled infrared detectors. Mater. Res. Bull. 2003, 38, 1235–1240.CrossRefGoogle Scholar
  23. [23]
    Liddiard, K. C. The active microbolometer: Anew concept in infrared detection. In Proc. SPIE 5274, Microelectronics: Design, Technology, and Packaging, Perth, Australia, 2004, pp 227–238.CrossRefGoogle Scholar
  24. [24]
    Liddiard, K. C. Thin-film resistance bolometer IR detectors—II. Infrared Phys. 1986, 26, 43–49.CrossRefGoogle Scholar
  25. [25]
    Bae, J. J.; Yoon, J. H.; Jeong, S.; Moon, B. H.; Han, J. T.; Jeong, H. J.; Lee, G. W.; Hwang, H. R.; Lee, Y. H.; Jeong, S. Y. et al. Sensitive photo-thermal response of graphene oxide for mid-infrared detection. Nanoscale 2015, 7, 15695–15700.CrossRefGoogle Scholar
  26. [26]
    Gowda, P.; Mohapatra, D. R.; Misra, A. Photoresponse of double-stacked graphene to Infrared radiation. Nanoscale 2015, 7, 15806–15813.CrossRefGoogle Scholar
  27. [27]
    Sassi, U.; Parret, R.; Nanot, S.; Bruna, M.; Borini, S.; De Fazio, D.; Zhao, Z.; Lidorikis, E.; Koppens, F. H. L.; Ferrari, A. C. et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 2017, 8, 14311.CrossRefGoogle Scholar
  28. [28]
    Leroy, J. B. Infrared spectroscopic studies of adsorption on MoS2 and WS2: Comparison between nanoparticles and bulk materials. Master’s Theses. Ball State University, Indiana, Muncie, 2011.Google Scholar
  29. [29]
    Daoudi, K.; Tsuchiya, T.; Yamaguchi, I.; Manabe, T.; Mizuta, S.; Kumagai, T. Microstructural and electrical properties of La0.7Ca0.3MnO3 thin films grown on SrTiO3 and LaAlO3 substrates using metal-organic deposition. J. Appl. Phys. 2005, 98, 013507.CrossRefGoogle Scholar
  30. [30]
    Kern, E. L.; Cain, O. J. Molybdenum disulfide electrical resistance devices. U.S. Patent 3465278 A, Sep. 2, 1969.Google Scholar
  31. [31]
    Boyd, I. W. Thin film growth by pulsed laser deposition. Ceram. Int. 1996, 22, 429–434.CrossRefGoogle Scholar
  32. [32]
    Chrisey, D. B.; Hubler, G. K. Pulsed Laser Deposition of Thin Films; Wiley: New York, 1994.Google Scholar
  33. [33]
    Eason, R. Pulsed Laser Deposition of Thin Films: Applications-LedGrowth of Functional Materials; Willey: New Jersey, 2007.Google Scholar
  34. [34]
    Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R.T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002.CrossRefGoogle Scholar
  35. [35]
    Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.CrossRefGoogle Scholar
  36. [36]
    Amani, M.; Chin, M. L.; Mazzoni, A. L.; Burke, R. A.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Dubey, M. Growthsubstrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 2014, 104, 203506.CrossRefGoogle Scholar
  37. [37]
    Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.CrossRefGoogle Scholar
  38. [38]
    Kranthi Kumar, V.; Dhar, S.; Choudhury, T. H.; Shivashankar, S. A.; Raghavan, S. A predictive approach to CVD of crystalline layers of TMDs: The case of MoS2. Nanoscale 2015, 7, 7802–7810.CrossRefGoogle Scholar
  39. [39]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  40. [40]
    Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.CrossRefGoogle Scholar
  41. [41]
    Beyerlein, I. J.; Zhang, X. H.; Misra, A. Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 2014, 44, 329–363.CrossRefGoogle Scholar
  42. [42]
    Takahashi, N.; Shiojiri, M. Stacking faults in hexagonal and rhombohedral MoS2 crystals produced by mechanical operation in relation to lubrication. Wear 1993, 167, 163–171.CrossRefGoogle Scholar
  43. [43]
    Ted Pella Inc. PELCO® Sapphire Substrate Discs, Technical Information [Online]. 2014; https://www.tedpella.com/vacuum_html/Sapphire_Substrate_Discs_and_Technical_ Information.htm.Google Scholar
  44. [44]
    Srivastava, J. K.; Prasad, M.; Wagner, J. B., Jr. Electrical conductivity of silicon dioxide thermally grown on silicon. J. Electrochem. Soc. 1985, 132, 955–963.CrossRefGoogle Scholar
  45. [45]
    Piccirillo, A.; Gobbi, A. L. Physical-electrical properties of silicon nitride deposited by PECVD on I II-V semiconductors J. Electrochem. Soc. 1990, 137, 3910–3917.CrossRefGoogle Scholar
  46. [46]
    Wieting, T. J.; Verble, J. L. Infrared and raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 1971, 3, 4286–4292.CrossRefGoogle Scholar
  47. [47]
    Li, W.; Birdwell, A. G.; Amani, M.; Burke, R. A.; Ling, X.; Lee, Y. H.; Liang, X. L.; Peng, L. M.; Richter, C. A.; Kong, J. et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 2014, 90, 195434.CrossRefGoogle Scholar
  48. [48]
    Liang, H. F. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance. AIP Adv. 2014, 4, 107131.CrossRefGoogle Scholar
  49. [49]
    Prashanthi, K.; Phani, A.; Thundat, T. Photothermal electrical resonance spectroscopy of physisorbed molecules on a nanowire resonator. Nano Lett. 2015, 15, 5658–5663.CrossRefGoogle Scholar
  50. [50]
    Shimamura, K.; Yuan, Z. S.; Shimojo, F.; Nakano, A. Effects of twins on the electronic properties of GaAs. Appl. Phys. Lett. 2013, 103, 022105.CrossRefGoogle Scholar
  51. [51]
    Dong, H. C.; Xiao, J. W.; Melnik, R.; Wen, B. Weak phonon scattering effect of twin boundaries on thermal transmission. Sci. Rep. 2016, 6, 19575.CrossRefGoogle Scholar
  52. [52]
    van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.CrossRefGoogle Scholar
  53. [53]
    Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.Google Scholar
  54. [54]
    Yu, Z. G.; Zhang, Y. W.; Yakobson, B. I. An anomalous formation pathway for dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2. Nano Lett. 2015, 15, 6855–6861.CrossRefGoogle Scholar
  55. [55]
    Jena, D.; Gossard, A. C.; Mishra, U. K. Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 2000, 76, 1707–1709.CrossRefGoogle Scholar
  56. [56]
    Esmaeili-Rad, M. R.; Salahuddin, S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 2013, 3, 2345.CrossRefGoogle Scholar
  57. [57]
    Man, M. K. L.; Deckoff-Jones, S.; Winchester, A.; Shi, G. S.; Gupta, G.; Mohite, A. D.; Kar, S.; Kioupakis, E.; Talapatra, S.; Dani, K. M. Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer. Sci. Rep. 2016, 6, 20890.CrossRefGoogle Scholar
  58. [58]
    Schlaf, R.; Lang, O.; Pettenkofer, C.; Jaegermann, W. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys. 1999, 85, 2732–2753.CrossRefGoogle Scholar
  59. [59]
    Hao, L. Z.; Liu, Y. J.; Gao, W.; Han, Z. D.; Xue, Q. Z.; Zeng, H. Z.; Wu, Z. P.; Zhu, J.; Zhang, W. L.Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015, 117, 114502.CrossRefGoogle Scholar
  60. [60]
    Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.CrossRefGoogle Scholar
  61. [61]
    Datskos, P. G.; Lavrik, N. V. Detectors—figures of merit. In Encyclopedia of Optical Engineering. Driggers, R. G., Ed.; Marcel Dekker Inc.: New York, 2003; pp 349–357.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ankur Goswami
    • 1
  • Priyesh Dhandaria
    • 1
  • Soupitak Pal
    • 2
  • Ryan McGee
    • 1
  • Faheem Khan
    • 1
  • Željka Antić
    • 1
  • Ravi Gaikwad
    • 1
  • Kovur Prashanthi
    • 1
  • Thomas Thundat
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations