Nano Research

, Volume 10, Issue 10, pp 3557–3570 | Cite as

Self-powered pressure sensor for ultra-wide range pressure detection

  • Kaushik Parida
  • Venkateswarlu Bhavanasi
  • Vipin Kumar
  • Ramaraju Bendi
  • Pooi See Lee
Research Article
  • 103 Downloads

Abstract

The next generation of sensors should be self-powered, maintenance-free, precise, and have wide-ranging sensing abilities. Despite extensive research and development in the field of pressure sensors, the sensitivity of most pressure sensors declines significantly at higher pressures, such that they are not able to detect a wide range of pressures with a uniformly high sensitivity. In this work, we demonstrate a single-electrode triboelectric pressure sensor, which can detect a wide range of pressures from 0.05 to 600 kPa with a high degree of sensitivity across the entire range by utilizing the synergistic effects of the piezoelectric polarization and triboelectric surface charges of self-polarized polyvinyldifluoride-trifluoroethylene (P(VDF-TrFE)) sponge. Taking into account both this wide pressure range and the sensitivity, this device exhibits the best performance relative to that of previously reported self-powered pressure sensors. This achievement facilitates wide-range pressure detection for a broad spectrum of applications, ranging from simple human touch, sensor networks, smart robotics, and sports applications, thus paving the way forward for the realization of next-generation sensing devices. Moreover, this work addresses the critical issue of saturation pressure in triboelectric nanogenerators and provides insights into the role of the surface charge on a piezoelectric polymer when used in a triboelectric nanogenerator.

Keywords

self-powered triboelectric piezoelectric nanogenerator pressure sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1567_MOESM1_ESM.pdf (3 mb)
Self-powered pressure sensor for ultra-wide range pressure detection

References

  1. [1]
    Rogers, J. A. Electronics: A diverse printed future. Nature 2010, 468, 177–178.CrossRefGoogle Scholar
  2. [2]
    Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.CrossRefGoogle Scholar
  3. [3]
    Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.CrossRefGoogle Scholar
  4. [4]
    Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.Google Scholar
  5. [5]
    Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156.CrossRefGoogle Scholar
  6. [6]
    Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.CrossRefGoogle Scholar
  7. [7]
    Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.CrossRefGoogle Scholar
  8. [8]
    Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.CrossRefGoogle Scholar
  9. [9]
    Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.CrossRefGoogle Scholar
  10. [10]
    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.Google Scholar
  11. [11]
    Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressuresensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.CrossRefGoogle Scholar
  12. [12]
    Lee, J. H.; Yoon, H. J.; Kim, T. Y.; Gupta, M. K.; Lee, J. H.; Seung, W.; Ryu, H.; Kim, S. W. Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 2015, 25, 3203–3209.CrossRefGoogle Scholar
  13. [13]
    Chun, J.; Lee, K. Y.; Kang, C. Y.; Kim, M. W.; Kim, S. W.; Baik, J. M. Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 2014, 24, 2038–2043.CrossRefGoogle Scholar
  14. [14]
    Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.CrossRefGoogle Scholar
  15. [15]
    Chun, J.; Kang, N. R.; Kim, J. Y.; Noh, M. S.; Kang, C. Y.; Choi, D.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 2015, 11, 1–10.CrossRefGoogle Scholar
  16. [16]
    Hu, Y. F.; Xu, C.; Zhang, Y.; Lin, L.; Snyder, R. L.; Wang, Z. L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Adv. Mater. 2011, 23, 4068–4071.CrossRefGoogle Scholar
  17. [17]
    Persano, L.; Dagdeviren, C.; Su, Y. W.; Zhang, Y. H.; Girardo, S.; Pisignano, D.; Huang, Y. G.; Rogers, J. A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633.CrossRefGoogle Scholar
  18. [18]
    Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266–8274.CrossRefGoogle Scholar
  19. [19]
    Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.CrossRefGoogle Scholar
  20. [20]
    Lee, K. Y.; Yoon, H. J.; Jiang, T.; Wen, X. N.; Seung, W.; Kim, S. W.; Wang, Z. L. Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 2016, 6, 1502566.CrossRefGoogle Scholar
  21. [21]
    Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.CrossRefGoogle Scholar
  22. [22]
    Wang, X. D.; Zhang, H. L.; Dong, L.; Han, X.; Du, W. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Self-powered highresolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.CrossRefGoogle Scholar
  23. [23]
    Bai, P.; Zhu, G.; Jing, Q. S.; Yang, J.; Chen, J.; Su, Y. J.; Ma, J. S.; Zhang, G.; Wang, Z. L. Membrane-based selfpowered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 2014, 24, 5807–5813.CrossRefGoogle Scholar
  24. [24]
    Mandal, D.; Yoon, S.; Kim, K. J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun. 2011, 32, 831–837.CrossRefGoogle Scholar
  25. [25]
    Sharma, T.; Je, S. S.; Gill, B.; Zhang, J. X. J. Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application. Sensor. Actuat. A: Phys. 2012, 177, 87–92.CrossRefGoogle Scholar
  26. [26]
    Tamang, A.; Ghosh, S. K.; Garain, S.; Alam, M. M.; Haeberle, J.; Henkel, K.; Schmeißser, D.; Mandal, D. DNAassisted ß-phase nucleation and alignment of molecular dipoles in PVDF film: A realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl. Mater. Interfaces, 2015, 7, 16143–16147.CrossRefGoogle Scholar
  27. [27]
    Cho, Y.; Park, J. B.; Kim, B. S.; Lee, J.; Hong, W. K.; Park, I. K.; Jang, J. E.; Sohn, J. I.; Cha, S.; Kim, J. M. Enhanced energy harvesting based on surface morphology engineering of P(VDF-TrFE) film. Nano Energy 2015, 16, 524–532.CrossRefGoogle Scholar
  28. [28]
    Li, M. Y.; Katsouras, I.; Piliego, C.; Glasser, G.; Lieberwirth, I.; Blom, P. W. M.; de Leeuw, D. M. Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J. Mater. Chem. C 2013, 1, 7695–7702.CrossRefGoogle Scholar
  29. [29]
    García-Gutiérrez, M. C.; Linares, A.; Martín-Fabiani, I.; Hernández, J. J.; Soccio, M.; Rueda, D. R.; Ezquerra, T. A.; Reynolds, M. Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures. Nanoscale 2013, 5, 6006–6012.CrossRefGoogle Scholar
  30. [30]
    Li, X.; Lim, Y. F.; Yao, K.; Tay, F. E. H.; Seah, K. H. P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications. Phys. Chem. Chem. Phys. 2013, 15, 515–520.Google Scholar
  31. [31]
    Pi, Z. Y.; Zhang, J. W.; Wen, C. Y.; Zhang, Z. B.; Wu, D. P. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 2014, 7, 33–41.CrossRefGoogle Scholar
  32. [32]
    Kusuma, D. Y.; Nguyen, C. A.; Lee, P. S. Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J. Phys. Chem. B 2010, 114, 13289–13293.CrossRefGoogle Scholar
  33. [33]
    Whiter, R. A.; Narayan, V.; Kar-Narayan, S. A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Adv. Energy Mater. 2014, 4, 1400519.CrossRefGoogle Scholar
  34. [34]
    Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Directcurrent nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.CrossRefGoogle Scholar
  35. [35]
    Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.CrossRefGoogle Scholar
  36. [36]
    Nguyen, V.; Zhu, R.; Yang, R. S. Environmental effects on nanogenerators. Nano Energy 2015, 14, 49–61.CrossRefGoogle Scholar
  37. [37]
    Parida, K.; Bhavanasi, V.; Kumar, V.; Wang, J. X.; Lee, P. S. Fast charging self-powered electric double layer capacitor. J. Power Sources 2017, 342, 70–78.CrossRefGoogle Scholar
  38. [38]
    Zhang, A. J.; Bai, H.; Li, L. Breath figure: A natureinspired preparation method for ordered porous films. Chem. Rev. 2015, 115, 9801–9868.CrossRefGoogle Scholar
  39. [39]
    Venault, A.; Chang, Y.; Wang, D. M.; Bouyer, D. A review on polymeric membranes and hydrogels prepared by vaporinduced phase separation process. Polym. Rev. 2013, 53, 568–626.CrossRefGoogle Scholar
  40. [40]
    Jana, S.; Garain, S.; Sen, S.; Mandal, D. The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys. Chem. Chem. Phys. 2015, 17, 17429–17436.CrossRefGoogle Scholar
  41. [41]
    Karan, S. K.; Bera, R.; Paria, S.; Das, A. K.; Maiti, S.; Maitra, A.; Khatua, B. B. An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv. Energy Mater. 2016, 6, 1601016.CrossRefGoogle Scholar
  42. [42]
    Chen, S. T.; Li, X.; Yao, K.; Tay, F. E. H.; Kumar, A.; Zeng, K. Y. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer 2012, 53, 1404–1408.CrossRefGoogle Scholar
  43. [43]
    Garain, S.; Sinha, T. K.; Adhikary, P.; Henkel, K.; Sen, S.; Ram, S.; Sinha, C.; Schmeiß er, D.; Mandal, D. Self-poled transparent and flexible UV light-emitting cerium complex–PVDF composite: A high-performance nanogenerator. ACS Appl. Mater. Interfaces 2015, 7, 1298–1307.CrossRefGoogle Scholar
  44. [44]
    Pardo, L.; Garcí a, A.; Brebø l, K.; Piazza, D.; Galassi, C. Key issues in the characterization of porous PZT based ceramics with morphotropic phase boundary composition. J. Electroceram. 2007, 19, 413–418.CrossRefGoogle Scholar
  45. [45]
    Wang, Z. L.; Lin, L.; Chen, J.; Niu, S.; Zi, Y. Triboelectric Nanogenerators; Springer International Publishing: Switzerland, 2016.Google Scholar
  46. [46]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and selfpowered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  47. [47]
    Lee, K. Y.; Gupta, M. K.; Kim, S. W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.CrossRefGoogle Scholar
  48. [48]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.CrossRefGoogle Scholar
  49. [49]
    Lee, J. H.; Hinchet, R.; Kim, T. Y.; Ryu, H.; Seung, W.; Yoon, H. J.; Kim, S. W. Control of skin potential by triboelectrification with ferroelectric polymers. Adv. Mater. 2015, 27, 5553–5558.CrossRefGoogle Scholar
  50. [50]
    Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.CrossRefGoogle Scholar
  51. [51]
    Chun, J.; Kim, J. W.; Jung, W. S.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.CrossRefGoogle Scholar
  52. [52]
    Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.CrossRefGoogle Scholar
  53. [53]
    Seol, M. L.; Lee, S. H.; Han, J. W.; Kim, D.; Cho, G. H.; Choi, Y. K. Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 2015, 17, 63–71.CrossRefGoogle Scholar
  54. [54]
    Bai, P.; Zhu, G.; Zhou, Y. S.; Wang, S. H.; Ma, J. S.; Zhang, G.; Wang, Z. L. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res. 2014, 7, 990–997.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kaushik Parida
    • 1
  • Venkateswarlu Bhavanasi
    • 1
  • Vipin Kumar
    • 1
  • Ramaraju Bendi
    • 1
  • Pooi See Lee
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations