Nano Research

, Volume 10, Issue 10, pp 3543–3556 | Cite as

Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI)

  • Yunhong Pi
  • Xiyi Li
  • Qibin Xia
  • Junliang Wu
  • Zhong Li
  • Yingwei Li
  • Jing Xiao
Research Article


Efficient separation and transfer of photogenerated electron/hole as well as enhanced visible light absorption play essential roles in photocatalytic reactions. To promote the photocatalytic reduction of Cr(VI), a toxic heavy metal ion, multiwalled carbon nanotube (MWCNT) was introduced as an electron acceptor into NH2-MIL-68(In). This led to the growth of a willow leaf-like metal-organic framework (MOF) on an MWCNT backbone forming MWCNT/NH2-MIL-68(In) (PL-1), which showed a highly efficient transfer of photogenerated carriers. Moreover, MWCNT incorporation introduced more mesopores for Cr(VI) diffusion and enhanced the visible light adsorption without lowering the conduction band position. As a result, the photocatalytic kinetic constant of PL-1 was found to be almost three times higher than that of the parent NH2-MIL-68(In). Thus, growing MOFs on MWCNTs provides a facile and promising solution for effective remediation of environmental pollution by utilizing solar energy. This work provides the first example of using MWCNT/MOF composites for photocatalytic reactions.


NH2-MIL-68(In) multiwalled carbon nanotube (MWCNT) photocatalytic reduction Cr(VI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1565_MOESM1_ESM.pdf (631 kb)
Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI)


  1. [1]
    Kieber, R. J.; Willey, J. D.; Zvalaren, S. D. Chromium speciation in rainwater: Temporal variability and atmospheric deposition. Environ. Sci. Technol. 2002, 36, 5321–5327.CrossRefGoogle Scholar
  2. [2]
    Testa, J. J.; Grela, M. A.; Litter, M. I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: Involvement of Cr(V) species. Environ. Sci. Technol. 2004, 38, 1589–1594.CrossRefGoogle Scholar
  3. [3]
    Congeevaram, S.; Dhanarani, S.; Park, J.; Dexilin, M.; Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 2007, 146, 270–277.CrossRefGoogle Scholar
  4. [4]
    Wang, X. L.; Pehkonen, S. O.; Ray, A. K. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 2004, 43, 1665–1672.CrossRefGoogle Scholar
  5. [5]
    Rengaraj, S.; Venkataraj, S.; Yeon, J. W.; Kim, Y.; Li, X. Z.; Pang, G. K. H. Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B: Environ. 2007, 77, 157–165.CrossRefGoogle Scholar
  6. [6]
    Emilio, C. A.; Magallanes, J. F.; Litter, M. I. Chemometric study on the TiO2-photocatalytic degradation of nitrilotriacetic acid. Anal. Chim. Acta 2007, 595, 89–97.CrossRefGoogle Scholar
  7. [7]
    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  8. [8]
    Gode, F.; Pehlivan, E. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. J. Hazard. Mater. 2005, 119, 175–182.CrossRefGoogle Scholar
  9. [9]
    Khalil, L. B.; Mourad, W. E.; Rophael, M. W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl. Catal. B: Environ. 1998, 17, 267–273.CrossRefGoogle Scholar
  10. [10]
    Yang, Y.; Wang, G. Z.; Deng, Q.; Ng, D. H.; Zhao, H. J. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl. Mater. Interfaces 2014, 6, 3008–3015.CrossRefGoogle Scholar
  11. [11]
    Liu, X. J.; Pan, L. K.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(VI). Chem. Commun. 2011, 47, 11984–11986.CrossRefGoogle Scholar
  12. [12]
    Zhang, Y. C.; Li, J.; Zhang, M.; Dionysiou, D. D. Sizetunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ. Sci. Technol. 2011, 45, 9324–9331.CrossRefGoogle Scholar
  13. [13]
    Yang, W. L.; Zhang, L.; Hu, Y.; Zhong, Y. J.; Wu, H. B.; Lou, X. W. Microwave-assisted synthesis of porous Ag2S-Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 11501–11504.CrossRefGoogle Scholar
  14. [14]
    Yoneyama, H.; Yamashita, Y.; Tamura, H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature 1979, 282, 817–818.CrossRefGoogle Scholar
  15. [15]
    Zhang, N.; Zhang, Y. H.; Pan, X. Y.; Fu, X. Z.; Liu, S. Q.; Xu, Y. J. Assembly of CdS nanoparticles on the twodimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J. Phys. Chem. C 2011, 115, 23501–23511.CrossRefGoogle Scholar
  16. [16]
    Hu, Y.; Gao, X. H.; Yu, L.; Wang, Y. R.; Ning, J. Q.; Xu, S. J.; Lou, X. W. Carbon-coated CdSpetalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem., Int. Ed. 2013, 52, 5636–5639.CrossRefGoogle Scholar
  17. [17]
    Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703–723.CrossRefGoogle Scholar
  18. [18]
    Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem., Int. Ed. 2013, 52, 2881–2885.CrossRefGoogle Scholar
  19. [19]
    Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Fé rey, G.; Morris, R. E.; Serre, C. Metalorganic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.CrossRefGoogle Scholar
  20. [20]
    Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial metal-organic frameworks as heterogeneous catalysts. Chem. Commun. 2012, 48, 11275–11288.CrossRefGoogle Scholar
  21. [21]
    Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867.CrossRefGoogle Scholar
  22. [22]
    Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabré siXamena, F. X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem.—Eur. J. 2007, 13, 5106–5112.CrossRefGoogle Scholar
  23. [23]
    Shen, L. J.; Liang, S. J.; Wu, W. M.; Liang, R. W.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans. 2013, 42, 13649–13657.CrossRefGoogle Scholar
  24. [24]
    Fei, K.; Wang, L. H.; Zhu, J. F. Facile fabrication of CdSmetal- organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 2015, 8, 1834–1846.CrossRefGoogle Scholar
  25. [25]
    Shen, L. J.; Wu, W. M.; Liang, R. W.; Lin, R.; Wu, L. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 2013, 5, 9374–9382.CrossRefGoogle Scholar
  26. [26]
    Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237–3249.Google Scholar
  27. [27]
    Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.CrossRefGoogle Scholar
  28. [28]
    Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metalorganic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.CrossRefGoogle Scholar
  29. [29]
    Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Meng, X. G.; Liu, H. M.; Ye, J. H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv. Sci. 2015, 2, 1500006.CrossRefGoogle Scholar
  30. [30]
    Liang, R. W.; Shen, L. J.; Jing, F. F.; Wu, W. M.; Qin, N.; Lin, R.; Wu, L. NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Appl. Catal. B: Environ. 2015, 162, 245–251.Google Scholar
  31. [31]
    Feng, W.; Feng, Y. Y.; Wu, Z. G.; Fujii, A.; Ozaki, M.; Yoshino, K. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes. J. Phys.: Condens. Matter 2005, 17, 4361–4368.Google Scholar
  32. [32]
    Cao, J.; Sun, J. Z.; Hong, J.; Li, H. Y.; Chen, H. Z.; Wang, M. Carbon nanotube/CdS core–shell nanowires prepared by a simple room-temperature chemical reduction method. Adv. Mater. 2004, 16, 84–87.CrossRefGoogle Scholar
  33. [33]
    Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.CrossRefGoogle Scholar
  34. [34]
    Kongkanand, A.; Kamat, P. V. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS Nano 2007, 1, 13–21.CrossRefGoogle Scholar
  35. [35]
    Dai, K.; Peng, T. Y.; Ke, D. N.; Wei, B. Q. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 2009, 20, 125603.CrossRefGoogle Scholar
  36. [36]
    Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A: Chem. 2005, 235, 194–199.CrossRefGoogle Scholar
  37. [37]
    Ma, L. L.; Sun, H. Z.; Zhang, Y. G.; Lin, Y. L.; Li, J. L.; Wang, E. K.; Yu, Y.; Tan, M.; Wang, J. B. Preparation, characterization and photocatalytic properties of CdS nanoparticles dotted on the surface of carbon nanotubes. Nanotechnology 2008, 19, 115709.CrossRefGoogle Scholar
  38. [38]
    Qadir, N. U.; Said, S. A. M.; Mansour, R. B.; Mezghani, K.; Ul Hamid, A. Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite. Dalton Trans. 2016, 45, 15621–15633.CrossRefGoogle Scholar
  39. [39]
    Anbia, M.; Hoseini, V. Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem. Eng. J. 2012, 191, 326–330.CrossRefGoogle Scholar
  40. [40]
    Goyanes, S.; Rubiolo, G. R.; Salazar, A.; Jimeno, A.; Corcuera, M. A.; Mondragon, I. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond Relat. Mater. 2007, 16, 412–417.CrossRefGoogle Scholar
  41. [41]
    Yan, X. B.; Tay, B. K.; Yang, Y. Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 Sol. J. Phys. Chem. B 2006, 110, 25844–25849.CrossRefGoogle Scholar
  42. [42]
    Xu, G. H.; Zhang, Q.; Zhou, W. P.; Huang, J. Q.; Wei, F. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array.Appl. Phys. A 2008, 92, 531–539.Google Scholar
  43. [43]
    Zhou, Y. S.; Chen, G.; Yu, Y. G.; Zhao, L. C.; Sun, J. X.; He, F.; Dong, H. J. A new oxynitride-based solid state Z-scheme photocatalytic system for efficient Cr(VI) reduction and water oxidation. Appl. Catal. B: Environ. 2016, 183, 176–184.CrossRefGoogle Scholar
  44. [44]
    Zhao, K.; Zhang, X.; Zhang, L. Z. The first BiOI-based solar cells. Electrochem. Commun. 2009, 11, 612–615.CrossRefGoogle Scholar
  45. [45]
    Wu, L.; Xue, M.; Qiu, S. L.; Chaplais, G.; Simon Masseron, A.; Patarin, J. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Microporous Mesoporous Mater. 2012, 157, 75–81.CrossRefGoogle Scholar
  46. [46]
    Petit, C.; Burress, J.; Bandosz, T. J. The synthesis and characterization of copper-based metal–organic framework/ graphite oxide composites. Carbon 2011, 49, 563–572.CrossRefGoogle Scholar
  47. [47]
    Li, Y. H.; Xu, C. L.; Wei, B. Q.; Zhang, X. F.; Zheng, M. X.; Wu, D. H.; Ajayan, P. M. Self-organized ribbons of aligned carbon nanotubes. Chem. Mater. 2002, 14, 483–485.CrossRefGoogle Scholar
  48. [48]
    Yang, D. Q.; Rochette, J. F.; Sacher, E. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication. J. Phys. Chem. B 2005, 109, 7788–7794.CrossRefGoogle Scholar
  49. [49]
    Branca, C.; Frusteri, F.; Magazù, V.; Mangione, A. Characterization of carbon nanotubes by TEM and infrared spectroscopy. J. Phys. Chem. B 2004, 108, 3469–3473.CrossRefGoogle Scholar
  50. [50]
    Wang, A. J.; Song, J. B.; Huang, Z. P.; Song, Y. L.; Yu, W.; Dong, H. L.; Hu, W. P.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, L. et al. Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. Nano Res. 2016, 9, 458–472.CrossRefGoogle Scholar
  51. [51]
    Li, X. Y.; Pi, Y. H.; Xia, Q. B.; Li, Z.; Xiao, J. TiO2 encapsulated in salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB.Appl. Catal. B: Environ. 2016, 191, 192–201.CrossRefGoogle Scholar
  52. [52]
    Lan, A. D.; Mukasyan, A. Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach. J. Phys. Chem. B 2005, 109, 16011–16016.CrossRefGoogle Scholar
  53. [53]
    Yang, S. J.; Cho, J. H.; Nahm, K. S.; Park, C. R. Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. Int. J. Hydrogen Energy 2010, 35, 13062–13067.CrossRefGoogle Scholar
  54. [54]
    Anbia, M.; Sheykhi, S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption. J. Ind. Eng. Chem. 2013, 19, 1583–1586.CrossRefGoogle Scholar
  55. [55]
    Yang, Y.; Ge, L.; Rudolph, V.; Zhu, Z. H. In situ synthesis of zeoliticimidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 2014, 43, 7028–7036.CrossRefGoogle Scholar
  56. [56]
    Han, T. T.; Xiao, Y. L.; Tong, M. M.; Huang, H. L.; Liu, D. H.; Wang, L. Y.; Zhong, C. L. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution. Chem. Eng. J. 2015, 275, 134–141.CrossRefGoogle Scholar
  57. [57]
    Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Chen, X. H.; Leng, L. J.; Li, H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporousphotocatalyst for dyes removal. Appl. Catal. B: Environ. 2015, 174–175, 445–454.CrossRefGoogle Scholar
  58. [58]
    Peng, T. Y.; Zeng, P.; Ke, D. N.; Liu, X. J.; Zhang, X. H. Hydrothermal preparation of multiwalled carbon nanotubes (MWCNTs)/CdSnanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy Fuels 2011, 25, 2203–2210.CrossRefGoogle Scholar
  59. [59]
    Li, X. Y.; Pi, Y. H.; Wu, L. Q.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J. for MBdegradation. Appl. Catal. B: Environ. 2017, 202, 653–663.CrossRefGoogle Scholar
  60. [60]
    Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metalorganic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew Chem., Int. Ed. 2016, 55, 5414–5445.CrossRefGoogle Scholar
  61. [61]
    Yang, C.; You, X.; Cheng, J. H.; Zheng, H. D.; Chen, Y. C. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl. Catal. B: Environ. 2017, 200, 673–680.CrossRefGoogle Scholar
  62. [62]
    Zhu, T.; Wu, H. B.; Wang, Y. B.; Xu, R.; Lou, X. W. D. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2012, 2, 1497–1502.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yunhong Pi
    • 1
    • 2
  • Xiyi Li
    • 1
    • 2
  • Qibin Xia
    • 1
    • 2
  • Junliang Wu
    • 1
    • 2
  • Zhong Li
    • 1
    • 2
  • Yingwei Li
    • 1
    • 2
  • Jing Xiao
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution ControlSouth China University of TechnologyGuangzhouChina

Personalised recommendations