Nano Research

, Volume 10, Issue 10, pp 3543–3556 | Cite as

Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI)

  • Yunhong Pi
  • Xiyi Li
  • Qibin Xia
  • Junliang Wu
  • Zhong Li
  • Yingwei Li
  • Jing Xiao
Research Article


Efficient separation and transfer of photogenerated electron/hole as well as enhanced visible light absorption play essential roles in photocatalytic reactions. To promote the photocatalytic reduction of Cr(VI), a toxic heavy metal ion, multiwalled carbon nanotube (MWCNT) was introduced as an electron acceptor into NH2-MIL-68(In). This led to the growth of a willow leaf-like metal-organic framework (MOF) on an MWCNT backbone forming MWCNT/NH2-MIL-68(In) (PL-1), which showed a highly efficient transfer of photogenerated carriers. Moreover, MWCNT incorporation introduced more mesopores for Cr(VI) diffusion and enhanced the visible light adsorption without lowering the conduction band position. As a result, the photocatalytic kinetic constant of PL-1 was found to be almost three times higher than that of the parent NH2-MIL-68(In). Thus, growing MOFs on MWCNTs provides a facile and promising solution for effective remediation of environmental pollution by utilizing solar energy. This work provides the first example of using MWCNT/MOF composites for photocatalytic reactions.


NH2-MIL-68(In) multiwalled carbon nanotube (MWCNT) photocatalytic reduction Cr(VI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The financial supports received from Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2016A030306031), the National Natural Science Foundation of China (No. 21576093), the Guangdong Program for Support of Top-notch Young Professionals (No. 2015TQ01N327), Pearl River and S&T Nova Program of Guangzhou (No. 201610010039), and Fundamental Research Funds for the Central Universities are gratefully acknowledged.

Supplementary material

12274_2017_1565_MOESM1_ESM.pdf (631 kb)
Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI)


  1. [1]
    Kieber, R. J.; Willey, J. D.; Zvalaren, S. D. Chromium speciation in rainwater: Temporal variability and atmospheric deposition. Environ. Sci. Technol. 2002, 36, 5321–5327.CrossRefGoogle Scholar
  2. [2]
    Testa, J. J.; Grela, M. A.; Litter, M. I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: Involvement of Cr(V) species. Environ. Sci. Technol. 2004, 38, 1589–1594.CrossRefGoogle Scholar
  3. [3]
    Congeevaram, S.; Dhanarani, S.; Park, J.; Dexilin, M.; Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 2007, 146, 270–277.CrossRefGoogle Scholar
  4. [4]
    Wang, X. L.; Pehkonen, S. O.; Ray, A. K. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 2004, 43, 1665–1672.CrossRefGoogle Scholar
  5. [5]
    Rengaraj, S.; Venkataraj, S.; Yeon, J. W.; Kim, Y.; Li, X. Z.; Pang, G. K. H. Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B: Environ. 2007, 77, 157–165.CrossRefGoogle Scholar
  6. [6]
    Emilio, C. A.; Magallanes, J. F.; Litter, M. I. Chemometric study on the TiO2-photocatalytic degradation of nitrilotriacetic acid. Anal. Chim. Acta 2007, 595, 89–97.CrossRefGoogle Scholar
  7. [7]
    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  8. [8]
    Gode, F.; Pehlivan, E. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. J. Hazard. Mater. 2005, 119, 175–182.CrossRefGoogle Scholar
  9. [9]
    Khalil, L. B.; Mourad, W. E.; Rophael, M. W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl. Catal. B: Environ. 1998, 17, 267–273.CrossRefGoogle Scholar
  10. [10]
    Yang, Y.; Wang, G. Z.; Deng, Q.; Ng, D. H.; Zhao, H. J. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl. Mater. Interfaces 2014, 6, 3008–3015.CrossRefGoogle Scholar
  11. [11]
    Liu, X. J.; Pan, L. K.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(VI). Chem. Commun. 2011, 47, 11984–11986.CrossRefGoogle Scholar
  12. [12]
    Zhang, Y. C.; Li, J.; Zhang, M.; Dionysiou, D. D. Sizetunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ. Sci. Technol. 2011, 45, 9324–9331.CrossRefGoogle Scholar
  13. [13]
    Yang, W. L.; Zhang, L.; Hu, Y.; Zhong, Y. J.; Wu, H. B.; Lou, X. W. Microwave-assisted synthesis of porous Ag2S-Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 11501–11504.CrossRefGoogle Scholar
  14. [14]
    Yoneyama, H.; Yamashita, Y.; Tamura, H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature 1979, 282, 817–818.CrossRefGoogle Scholar
  15. [15]
    Zhang, N.; Zhang, Y. H.; Pan, X. Y.; Fu, X. Z.; Liu, S. Q.; Xu, Y. J. Assembly of CdS nanoparticles on the twodimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J. Phys. Chem. C 2011, 115, 23501–23511.CrossRefGoogle Scholar
  16. [16]
    Hu, Y.; Gao, X. H.; Yu, L.; Wang, Y. R.; Ning, J. Q.; Xu, S. J.; Lou, X. W. Carbon-coated CdSpetalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem., Int. Ed. 2013, 52, 5636–5639.CrossRefGoogle Scholar
  17. [17]
    Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703–723.CrossRefGoogle Scholar
  18. [18]
    Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem., Int. Ed. 2013, 52, 2881–2885.CrossRefGoogle Scholar
  19. [19]
    Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Fé rey, G.; Morris, R. E.; Serre, C. Metalorganic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.CrossRefGoogle Scholar
  20. [20]
    Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial metal-organic frameworks as heterogeneous catalysts. Chem. Commun. 2012, 48, 11275–11288.CrossRefGoogle Scholar
  21. [21]
    Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867.CrossRefGoogle Scholar
  22. [22]
    Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabré siXamena, F. X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem.—Eur. J. 2007, 13, 5106–5112.CrossRefGoogle Scholar
  23. [23]
    Shen, L. J.; Liang, S. J.; Wu, W. M.; Liang, R. W.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans. 2013, 42, 13649–13657.CrossRefGoogle Scholar
  24. [24]
    Fei, K.; Wang, L. H.; Zhu, J. F. Facile fabrication of CdSmetal- organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 2015, 8, 1834–1846.CrossRefGoogle Scholar
  25. [25]
    Shen, L. J.; Wu, W. M.; Liang, R. W.; Lin, R.; Wu, L. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 2013, 5, 9374–9382.CrossRefGoogle Scholar
  26. [26]
    Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237–3249.Google Scholar
  27. [27]
    Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.CrossRefGoogle Scholar
  28. [28]
    Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metalorganic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.CrossRefGoogle Scholar
  29. [29]
    Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Meng, X. G.; Liu, H. M.; Ye, J. H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv. Sci. 2015, 2, 1500006.CrossRefGoogle Scholar
  30. [30]
    Liang, R. W.; Shen, L. J.; Jing, F. F.; Wu, W. M.; Qin, N.; Lin, R.; Wu, L. NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Appl. Catal. B: Environ. 2015, 162, 245–251.Google Scholar
  31. [31]
    Feng, W.; Feng, Y. Y.; Wu, Z. G.; Fujii, A.; Ozaki, M.; Yoshino, K. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes. J. Phys.: Condens. Matter 2005, 17, 4361–4368.Google Scholar
  32. [32]
    Cao, J.; Sun, J. Z.; Hong, J.; Li, H. Y.; Chen, H. Z.; Wang, M. Carbon nanotube/CdS core–shell nanowires prepared by a simple room-temperature chemical reduction method. Adv. Mater. 2004, 16, 84–87.CrossRefGoogle Scholar
  33. [33]
    Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.CrossRefGoogle Scholar
  34. [34]
    Kongkanand, A.; Kamat, P. V. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS Nano 2007, 1, 13–21.CrossRefGoogle Scholar
  35. [35]
    Dai, K.; Peng, T. Y.; Ke, D. N.; Wei, B. Q. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 2009, 20, 125603.CrossRefGoogle Scholar
  36. [36]
    Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A: Chem. 2005, 235, 194–199.CrossRefGoogle Scholar
  37. [37]
    Ma, L. L.; Sun, H. Z.; Zhang, Y. G.; Lin, Y. L.; Li, J. L.; Wang, E. K.; Yu, Y.; Tan, M.; Wang, J. B. Preparation, characterization and photocatalytic properties of CdS nanoparticles dotted on the surface of carbon nanotubes. Nanotechnology 2008, 19, 115709.CrossRefGoogle Scholar
  38. [38]
    Qadir, N. U.; Said, S. A. M.; Mansour, R. B.; Mezghani, K.; Ul Hamid, A. Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite. Dalton Trans. 2016, 45, 15621–15633.CrossRefGoogle Scholar
  39. [39]
    Anbia, M.; Hoseini, V. Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem. Eng. J. 2012, 191, 326–330.CrossRefGoogle Scholar
  40. [40]
    Goyanes, S.; Rubiolo, G. R.; Salazar, A.; Jimeno, A.; Corcuera, M. A.; Mondragon, I. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond Relat. Mater. 2007, 16, 412–417.CrossRefGoogle Scholar
  41. [41]
    Yan, X. B.; Tay, B. K.; Yang, Y. Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 Sol. J. Phys. Chem. B 2006, 110, 25844–25849.CrossRefGoogle Scholar
  42. [42]
    Xu, G. H.; Zhang, Q.; Zhou, W. P.; Huang, J. Q.; Wei, F. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array.Appl. Phys. A 2008, 92, 531–539.Google Scholar
  43. [43]
    Zhou, Y. S.; Chen, G.; Yu, Y. G.; Zhao, L. C.; Sun, J. X.; He, F.; Dong, H. J. A new oxynitride-based solid state Z-scheme photocatalytic system for efficient Cr(VI) reduction and water oxidation. Appl. Catal. B: Environ. 2016, 183, 176–184.CrossRefGoogle Scholar
  44. [44]
    Zhao, K.; Zhang, X.; Zhang, L. Z. The first BiOI-based solar cells. Electrochem. Commun. 2009, 11, 612–615.CrossRefGoogle Scholar
  45. [45]
    Wu, L.; Xue, M.; Qiu, S. L.; Chaplais, G.; Simon Masseron, A.; Patarin, J. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Microporous Mesoporous Mater. 2012, 157, 75–81.CrossRefGoogle Scholar
  46. [46]
    Petit, C.; Burress, J.; Bandosz, T. J. The synthesis and characterization of copper-based metal–organic framework/ graphite oxide composites. Carbon 2011, 49, 563–572.CrossRefGoogle Scholar
  47. [47]
    Li, Y. H.; Xu, C. L.; Wei, B. Q.; Zhang, X. F.; Zheng, M. X.; Wu, D. H.; Ajayan, P. M. Self-organized ribbons of aligned carbon nanotubes. Chem. Mater. 2002, 14, 483–485.CrossRefGoogle Scholar
  48. [48]
    Yang, D. Q.; Rochette, J. F.; Sacher, E. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication. J. Phys. Chem. B 2005, 109, 7788–7794.CrossRefGoogle Scholar
  49. [49]
    Branca, C.; Frusteri, F.; Magazù, V.; Mangione, A. Characterization of carbon nanotubes by TEM and infrared spectroscopy. J. Phys. Chem. B 2004, 108, 3469–3473.CrossRefGoogle Scholar
  50. [50]
    Wang, A. J.; Song, J. B.; Huang, Z. P.; Song, Y. L.; Yu, W.; Dong, H. L.; Hu, W. P.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, L. et al. Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. Nano Res. 2016, 9, 458–472.CrossRefGoogle Scholar
  51. [51]
    Li, X. Y.; Pi, Y. H.; Xia, Q. B.; Li, Z.; Xiao, J. TiO2 encapsulated in salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB.Appl. Catal. B: Environ. 2016, 191, 192–201.CrossRefGoogle Scholar
  52. [52]
    Lan, A. D.; Mukasyan, A. Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach. J. Phys. Chem. B 2005, 109, 16011–16016.CrossRefGoogle Scholar
  53. [53]
    Yang, S. J.; Cho, J. H.; Nahm, K. S.; Park, C. R. Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. Int. J. Hydrogen Energy 2010, 35, 13062–13067.CrossRefGoogle Scholar
  54. [54]
    Anbia, M.; Sheykhi, S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption. J. Ind. Eng. Chem. 2013, 19, 1583–1586.CrossRefGoogle Scholar
  55. [55]
    Yang, Y.; Ge, L.; Rudolph, V.; Zhu, Z. H. In situ synthesis of zeoliticimidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 2014, 43, 7028–7036.CrossRefGoogle Scholar
  56. [56]
    Han, T. T.; Xiao, Y. L.; Tong, M. M.; Huang, H. L.; Liu, D. H.; Wang, L. Y.; Zhong, C. L. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution. Chem. Eng. J. 2015, 275, 134–141.CrossRefGoogle Scholar
  57. [57]
    Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Chen, X. H.; Leng, L. J.; Li, H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporousphotocatalyst for dyes removal. Appl. Catal. B: Environ. 2015, 174–175, 445–454.CrossRefGoogle Scholar
  58. [58]
    Peng, T. Y.; Zeng, P.; Ke, D. N.; Liu, X. J.; Zhang, X. H. Hydrothermal preparation of multiwalled carbon nanotubes (MWCNTs)/CdSnanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy Fuels 2011, 25, 2203–2210.CrossRefGoogle Scholar
  59. [59]
    Li, X. Y.; Pi, Y. H.; Wu, L. Q.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J. for MBdegradation. Appl. Catal. B: Environ. 2017, 202, 653–663.CrossRefGoogle Scholar
  60. [60]
    Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metalorganic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew Chem., Int. Ed. 2016, 55, 5414–5445.CrossRefGoogle Scholar
  61. [61]
    Yang, C.; You, X.; Cheng, J. H.; Zheng, H. D.; Chen, Y. C. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl. Catal. B: Environ. 2017, 200, 673–680.CrossRefGoogle Scholar
  62. [62]
    Zhu, T.; Wu, H. B.; Wang, Y. B.; Xu, R.; Lou, X. W. D. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2012, 2, 1497–1502.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yunhong Pi
    • 1
    • 2
  • Xiyi Li
    • 1
    • 2
  • Qibin Xia
    • 1
    • 2
  • Junliang Wu
    • 1
    • 2
  • Zhong Li
    • 1
    • 2
  • Yingwei Li
    • 1
    • 2
  • Jing Xiao
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution ControlSouth China University of TechnologyGuangzhouChina

Personalised recommendations