Tribotronic triggers and sequential logic circuits


In this paper, a floating-gate tribotronic transistor (FGTT) based on a mobile triboelectric layer and a traditional silicon-based field-effect transistor (FET) is proposed. In the FGTT, the triboelectric charges in the layer created by contact electrification can be used to modulate charge carrier transport in the transistor. Based on the FGTTs and FETs, a tribotronic negated AND (NAND) gate that achieves mechanical-electrical coupled inputs, logic operations, and electrical level outputs is fabricated. By further integrating tribotronic NAND gates with traditional digital circuits, several basic units such as the tribotronic S-R trigger, D trigger, and T trigger have been demonstrated. Additionally, tribotronic sequential logic circuits such as registers and counters have also been integrated to enable external contact triggered storage and computation. In contrast to the conventional sequential logic units controlled by electrical signals, contact-triggered tribotronic sequential logic circuits are able to realize direct interaction and integration with the external environment. This development can lead to their potential application in micro/nano-sensors, electromechanical storage, interactive control, and intelligent instrumentation.

This is a preview of subscription content, access via your institution.


  1. [1]

    Lundstrom, M. Moore’s law forever. Science 2003, 299, 210–211.

    Article  Google Scholar 

  2. [2]

    Peercy, P. S. The drive to miniaturization. Nature 2000, 406, 1023–1026.

    Article  Google Scholar 

  3. [3]

    Stevenson, I. H.; Kording, K. P. How advances in neural recording affect data analysis. Nat. Neurosci. 2011, 14, 139–142.

    Article  Google Scholar 

  4. [4]

    Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.

    Article  Google Scholar 

  5. [5]

    Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comp. Sy. 2013, 29, 1645–1660.

    Article  Google Scholar 

  6. [6]

    Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 2005, 4, 347–352.

    Article  Google Scholar 

  7. [7]

    Tsong, A. E.; Tuch, B. B.; Li, H.; Johnson, A. D. Evolution of alternative transcriptional circuits with identical logic. Nature 2006, 443, 415–420.

    Article  Google Scholar 

  8. [8]

    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.

  9. [9]

    Pu, X.; Liu, M. M.; Li, L. X.; Zhang, C.; Pang, Y. K.; Jiang, C. Y.; Shao, L. H.; Hu, W. G.; Wang, Z. L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 2016, 3, 1500255.

    Article  Google Scholar 

  10. [10]

    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  11. [11]

    Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

    Article  Google Scholar 

  12. [12]

    Zhou, T.; Zhang, C.; Han, C. B.; Fan, F. R.; Tang, W.; Wang, Z. L. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 2014, 6, 14695–14701.

    Article  Google Scholar 

  13. [13]

    Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

    Article  Google Scholar 

  14. [14]

    Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65.

    Article  Google Scholar 

  15. [15]

    Tang, W.; Zhang, C.; Han, C. B.; Wang, Z. L. Enhancing output power of cylindrical triboelectric nanogenerators by segmentation design and multilayer integration. Adv. Funct. Mater. 2014, 24, 6684–6690.

    Article  Google Scholar 

  16. [16]

    Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.

    Article  Google Scholar 

  17. [17]

    Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.

    Article  Google Scholar 

  18. [18]

    Li, X. H.; Han, C. B.; Jiang, T.; Zhang, C.; Wang, Z. L. A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement. Nanotechnology 2016, 27, 085401.

    Article  Google Scholar 

  19. [19]

    Jiang, T.; Zhang, L. M.; Chen, X. Y.; Han, C. B.; Tang, W.; Zhang, C.; Xu, L.; Wang, Z. L. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 2015, 9, 12562–12572.

    Article  Google Scholar 

  20. [20]

    Zhang, L. M.; Han, C. B.; Jiang, T.; Zhou, T.; Li, X. H.; Zhang, C.; Wang, Z. L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 2016, 22, 87–94.

    Article  Google Scholar 

  21. [21]

    Xu, L.; Pang, Y. K.; Zhang, C.; Jiang, T.; Chen, X. Y.; Luo, J. J.; Tang, W.; Cao, X.; Wang, Z. L. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 2017, 31, 351–358.

    Article  Google Scholar 

  22. [22]

    Zhang, C.; Tang, W.; Zhang, L. M.; Han, C. B.; Wang, Z. L. Contact electrification field-effect transistor. ACS Nano 2014, 8, 8702–8709.

    Article  Google Scholar 

  23. [23]

    Zhang, C.; Wang, Z. L. Tribotronics—A new field by coupling triboelectricity and semiconductor. Nano Today 2016, 11, 521–536.

    Article  Google Scholar 

  24. [24]

    Zhang, C.; Tang, W.; Pang, Y. K.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.

    Article  Google Scholar 

  25. [25]

    Xue, F.; Chen, L. B.; Wang, L. F.; Pang, Y. K.; Chen, J.; Zhang, C.; Wang, Z. L. MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104–2109.

    Article  Google Scholar 

  26. [26]

    Yang, Z. W.; Pang, Y. K.; Zhang, L. M.; Lu, C. X.; Chen, J.; Zhou, T.; Zhang, C.; Wang, Z. L. Tribotronic transistor array as an active tactile sensing system. ACS Nano 2016, 10, 10912–10920.

    Article  Google Scholar 

  27. [27]

    Zhang, C.; Zhang, L. M.; Tang, W.; Han, C. B.; Wang, Z. L. Tribotronic logic circuits and basic operations. Adv. Mater. 2015, 27, 3533–3540.

    Article  Google Scholar 

  28. [28]

    Li, J.; Zhang, C.; Duan, L.; Zhang, L. M.; Wang, L. D.; Dong, G. F.; Wang, Z. L. Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system. Adv. Mater. 2016, 28, 106–110.

    Article  Google Scholar 

  29. [29]

    Zhang, C.; Li, J.; Han, C. B.; Zhang, L. M.; Chen, X. Y.; Wang, L. D.; Dong, G. F.; Wang, Z. L. Organic tribotronic transistor for contact-electrification-gated light-emitting diode. Adv. Funct. Mater. 2015, 25, 5625–5632.

    Article  Google Scholar 

  30. [30]

    Zhang, C.; Zhang, Z. H.; Yang, X.; Zhou, T.; Han, C. B.; Wang, Z. L. Tribotronic phototransistor for enhanced photodetection and hybrid energy harvesting. Adv. Funct. Mater. 2016, 26, 2554–2560.

    Article  Google Scholar 

  31. [31]

    Pang, Y. K.; Xue, F.; Wang, L. F.; Chen, J.; Luo, J. J.; Jiang, T.; Zhang, C.; Wang, Z. L. Tribotronic enhanced photoresponsivity of a MoS2 phototransistor. Adv. Sci. 2016, 3, 1500419.

    Article  Google Scholar 

  32. [32]

    Han, C. B.; Zhang, C.; Tian, J. J.; Li, X. H.; Zhang, L. M.; Li, Z.; Wang, Z. L. Triboelectrification induced UV emission from plasmon discharge. Nano Res. 2015, 8, 219–226.

    Article  Google Scholar 

  33. [33]

    Zhou, T.; Yang, Z. W.; Pang, Y. K.; Xu, L.; Zhang, C.; Wang, Z. L. Tribotronic tuning diode for active analog signal modulation. ACS Nano 2017, 11, 882–888.

    Article  Google Scholar 

  34. [34]

    Pang, Y. K.; Li, J.; Zhou, T.; Yang, Z. W.; Luo, J. J.; Zhang, L. M.; Dong, G. F.; Zhang, C.; Wang, Z. L. Flexible transparent tribotronic transistor for active modulation of conventional electronics. Nano Energy 2017, 31, 533–540.

    Article  Google Scholar 

Download references


The authors thank the support of National Natural Science Foundation of China (Nos. 51475099 and 51432005), Beijing Natural Science Foundation (No. 4163077), Beijing Nova Program (No. Z171100001117054), the Youth Innovation Promotion Association, CAS (No. 2014033), the “thousands talents” program for the pioneer researcher and his innovation team, China, and National Key Research and Development Program of China (No.2016YFA0202704).

Author information



Corresponding authors

Correspondence to Chi Zhang or Zhong Lin Wang.

Electronic supplementary material

Tribotronic triggers and sequential logic circuits

Supplementary material, approximately 16.9 MB.

Supplementary material, approximately 7.08 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L.M., Yang, Z.W., Pang, Y.K. et al. Tribotronic triggers and sequential logic circuits. Nano Res. 10, 3534–3542 (2017).

Download citation


  • tribotronics
  • tribotronic transistor
  • triboelectric nanogenerator
  • trigger
  • sequential logic circuits