Nano Research

, Volume 10, Issue 10, pp 3522–3533 | Cite as

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

  • Mohammad Al-Mamun
  • Huajie Yin
  • Porun Liu
  • Xintai Su
  • Haimin Zhang
  • Huagui Yang
  • Dan Wang
  • Zhiyong Tang
  • Yun Wang
  • Huijun Zhao
Research Article

Abstract

The activity and durability of electrocatalysts are important factors in their practical applications, such as electrocatalytic oxygen evolution reactions (OERs) used in water splitting cells and metal–air batteries. In this study, a novel electrocatalyst, comprising few-layered graphitic carbon (~5 atomic layers) encapsulated heazlewoodite (Ni3S2@C) nanoparticles (NPs), was designed and synthesized using a one-step solid phase pyrolysis method. In the OER test, the Ni3S2@C catalyst exhibited an overpotential of 298 mV at a current density of 10 mA·cm–2, a Tafel slope of 51.3 mV·dec–1, and charge transfer resistance of 22.0 Ω, which were better than those of benchmark RuO2 and most nickel-sulfide-based catalysts previously reported. This improved performance was ascribed to the high electronic conductivity of the graphitic carbon encapsulating layers. Moreover, the encapsulation of graphitic carbon layers provided superb stability without noticeable oxidation or depletion of Ni3S2 NPs within the nanocomposite. Therefore, the strategy introduced in this work can benefit the development of highly stable metal sulfide electrocatalysts for energy conversion and storage applications, without sacrificing electrocatalytic activity.

Keywords

heazlewoodite electrocatalyst encapsulation oxygen evolution reaction pyrolysis graphitic carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1563_MOESM1_ESM.pdf (2.4 mb)
Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

References

  1. [1]
    Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.CrossRefGoogle Scholar
  2. [2]
    Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.CrossRefGoogle Scholar
  3. [3]
    Freunberger, S. A. Batteries: Charging ahead rationally. Nat. Energy 2016, 1, 16074.CrossRefGoogle Scholar
  4. [4]
    Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.CrossRefGoogle Scholar
  5. [5]
    Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 1986, 14, 397–426.CrossRefGoogle Scholar
  6. [6]
    Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.CrossRefGoogle Scholar
  7. [7]
    Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solidsolution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.CrossRefGoogle Scholar
  8. [8]
    Li, H.; Shao, Y. D.; Su, Y. T.; Gao, Y. H.; Wang, X. W. Vapor-phase atomic layer deposition of nickel sulfide and its application for efficient oxygen-evolution electrocatalysis. Chem. Mater. 2016, 28, 1155–1164.CrossRefGoogle Scholar
  9. [9]
    Yang, J.; Zhu, G. X.; Liu, Y. J.; Xia, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712–4721.CrossRefGoogle Scholar
  10. [10]
    Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.CrossRefGoogle Scholar
  11. [11]
    Falkowski, J. M.; Concannon, N. M.; Yan, B.; Surendranath, Y. Heazlewoodite, Ni3S2: A potent catalyst for oxygen reduction to water under benign conditions. J. Am. Chem. Soc. 2015, 137, 7978–7981.CrossRefGoogle Scholar
  12. [12]
    Li, J. J.; Shen, P. K.; Tian, Z. Q. One-step synthesis of Ni3S2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 7136–7142.CrossRefGoogle Scholar
  13. [13]
    Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.CrossRefGoogle Scholar
  14. [14]
    Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. J.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.CrossRefGoogle Scholar
  15. [15]
    Shang, X.; Li, X.; Hu, W. H.; Dong, B.; Liu, Y. R.; Han, G. Q.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2016, 378, 15–21.CrossRefGoogle Scholar
  16. [16]
    Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.CrossRefGoogle Scholar
  17. [17]
    Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.CrossRefGoogle Scholar
  18. [18]
    Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S.; Lee, J. S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.CrossRefGoogle Scholar
  19. [19]
    Mabayoje, O.; Shoola, A.; Wygant, B. R.; Mullins, C. B. The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 2016, 1, 195–201.CrossRefGoogle Scholar
  20. [20]
    Liu, T. T.; Liang, Y. H.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochem. Commun. 2015, 60, 92–96.CrossRefGoogle Scholar
  21. [21]
    Liu, X.; You, B.; Yu, X. Y.; Chipman, J.; Sun, Y. J. Electrochemical oxidation to construct a nickel sulfide/oxide heterostructure with improvement of capacitance. J. Mater. Chem. A 2016, 4, 11611–11615.CrossRefGoogle Scholar
  22. [22]
    Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.CrossRefGoogle Scholar
  23. [23]
    Zhu, C. Y.; Xu, F.; Chen, J.; Min, H. H.; Dong, H.; Tong, L.; Qasim, K.; Li, S. L.; Sun, L. T. Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells. J. Power Sources 2016, 303, 159–167.CrossRefGoogle Scholar
  24. [24]
    Bi, E. B.; Chen, H.; Yang, X. D.; Peng, W. Q.; Grätzel, M.; Han, L. Y. A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 2637–2641.CrossRefGoogle Scholar
  25. [25]
    Feng, L. L.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Chen, H.; Wang, Y.; Zou, Y. C.; Wang, D. J.; Zou, X. X. Carbonarmored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 980–988.CrossRefGoogle Scholar
  26. [26]
    Zhou, Y. S.; Jin, P.; Zhou, Y. T. Synthesis of carbonencapsulated cobalt sulfide nanoparticles and their electrochemical property. Ionics 2016, 22, 2239–2243.CrossRefGoogle Scholar
  27. [27]
    Lou, P. L.; Tan, Y. B.; Lu, P.; Cui, Z. H.; Guo, X. X. Novel one-step gas-phase reaction synthesis of transition metal sulfide nanoparticles embedded in carbon matrices for reversible lithium storage. J. Mater. Chem. A 2016, 4, 16849–16855.CrossRefGoogle Scholar
  28. [28]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  29. [29]
    Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.CrossRefGoogle Scholar
  30. [30]
    Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.CrossRefGoogle Scholar
  31. [31]
    Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Laasonen, K. Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 4535–4538.CrossRefGoogle Scholar
  32. [32]
    Taubert, S.; Laasonen, K. The molecular and magnetic structure of carbon-enclosed and partially covered Fe55 particles. Phys. Chem. Chem. Phys. 2014, 16, 3648–3660.CrossRefGoogle Scholar
  33. [33]
    Liu, Y. Y.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Transition metals (Fe, Co, and Ni) encapsulated in nitrogendoped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J. Mater. Chem. A 2016, 4, 1694–1701.CrossRefGoogle Scholar
  34. [34]
    Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.CrossRefGoogle Scholar
  35. [35]
    Burschka, J.; Brault, V.; Ahmad, S.; Breau, L.; Nazeeruddin, M. K.; Marsan, B.; Zakeeruddin, S. M.; Gratzel, M. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ. Sci. 2012, 5, 6089–6097.CrossRefGoogle Scholar
  36. [36]
    Lin, H. L.; Liu, F.; Wang, X. J.; Ai, Y. N.; Yao, Z. Q.; Chu, L.; Han, S.; Zhuang, X. D. Graphene-coupled flowerlike Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity. Electrochim. Acta 2016, 191, 705–715.CrossRefGoogle Scholar
  37. [37]
    Jang, B.; Park, M.; Chae, O. B.; Park, S.; Kim, Y.; Oh, S. M.; Piao, Y. Z.; Hyeon, T. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J. Am. Chem. Soc. 2012, 134, 15010–15015.CrossRefGoogle Scholar
  38. [38]
    Al-Mamun, M.; Zhu, Z. J.; Yin, H. J.; Su, X. T.; Zhang, H. M.; Liu, P. R.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Wang, Y. et al. The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Chem. Commun. 2016, 52, 9450–9453.CrossRefGoogle Scholar
  39. [39]
    Al-Mamun, M.; Su, X. T.; Zhang, H. M.; Yin, H. J.; Liu, P. R.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Wang, Y.; Zhao, H. J. Strongly coupled CoCr2O4/carbon nanosheets as high performance electrocatalysts for oxygen evolution reaction. Small 2016, 12, 2866–2871.CrossRefGoogle Scholar
  40. [40]
    Cheng, Z.; Abernathy, H.; Liu, M. L. Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 2007, 111, 17997–18000.CrossRefGoogle Scholar
  41. [41]
    Zhu, J. L.; Li, Y. Y.; Kang, S.; Wei, X. L.; Shen, P. K. One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. J. Mater. Chem. A 2014, 2, 3142–3147.CrossRefGoogle Scholar
  42. [42]
    Haslam, G. E.; Chin, X. Y.; Burstein, G. T. Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon. Phys. Chem. Chem. Phys. 2011, 13, 12968–12974.CrossRefGoogle Scholar
  43. [43]
    Gao, S.; Liu, Y. P.; Li, G. D.; Guo, Y. C.; Zou, Y. C.; Zou, X. X. General urea-assisted synthesis of carbon-coated metal phosphide nanoparticles for efficient hydrogen evolution electrocatalysis. Electrochim. Acta 2016, 199, 99–107.CrossRefGoogle Scholar
  44. [44]
    Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRefGoogle Scholar
  45. [45]
    Zhu, T.; Zhu, L. L.; Wang, J.; Ho, G. W. In situ chemical etching of tunable 3D Ni3S2 superstructures for bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2016, 4, 13916–13922.CrossRefGoogle Scholar
  46. [46]
    Buckley, A. N.; Woods, R. Electrochemical and XPS studies of the surface oxidation of synthetic heazlewoodite (Ni3S2). J. Appl. Electrochem. 1991, 21, 575–582.CrossRefGoogle Scholar
  47. [47]
    Al-Mamun, M.; Zhang, H. M.; Liu, P. R.; Wang, Y.; Cao, J.; Zhao, H. J. Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv. 2014, 4, 21277–21283.CrossRefGoogle Scholar
  48. [48]
    Wang, Q.; Gao, R.; Li, J. H. Porous, self-supported Ni3S2/Ni nanoarchitectured electrode operating through efficient lithium-driven conversion reactions. Appl. Phys. Lett. 2007, 90, 143107.CrossRefGoogle Scholar
  49. [49]
    Tan, Z. J.; Liu, P. R.; Zhang, H. M.; Wang, Y.; Al-Mamun, M.; Yang, H. G.; Wang, D.; Tang, Z. Y.; Zhao, H. J. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface. Chem. Commun. 2015, 51, 5695–5697.CrossRefGoogle Scholar
  50. [50]
    Al-Mamun, M.; Wang, Y.; Liu, P. R.; Zhong, Y. L.; Yin, H. J.; Su, X. T.; Zhang, H. M.; Yang, H. G.; Wang, D.; Tang, Z. Y. et al. One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 18314–18321.CrossRefGoogle Scholar
  51. [51]
    Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.CrossRefGoogle Scholar
  52. [52]
    He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.CrossRefGoogle Scholar
  53. [53]
    Li, Y. B.; Zhang, H. M.; Wang, Y.; Liu, P. R.; Yang, H. G.; Yao, X. D.; Wang, D.; Tang, Z. Y.; Zhao, H. J. A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy Environ. Sci. 2014, 7, 3720–3726.CrossRefGoogle Scholar
  54. [54]
    Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.CrossRefGoogle Scholar
  55. [55]
    Homma, Y.; Kobayashi, Y.; Ogino, T.; Takagi, D.; Ito, R.; Jung, Y. J.; Ajayan, P. M. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 2003, 107, 12161–12164.CrossRefGoogle Scholar
  56. [56]
    Moisala, A.; Nasibulin, A. G.; Kauppinen, E. I. The role of metal nanoparticles in the catalytic production of singlewalled carbon nanotubes—A review. J. Phys.: Condens. Matter 2003, 15, S3011.Google Scholar
  57. [57]
    Yokoyama, H.; Numakura, H.; Koiwa, M. The solubility and diffusion of carbon in palladium. Acta Mater. 1998, 46, 2823–2830.CrossRefGoogle Scholar
  58. [58]
    Fu, W.; Du, F. H.; Su, J.; Li, X. H.; Wei, X.; Ye, T. N.; Wang, K. X.; Chen, J. S. In situ catalytic growth of largearea multilayered graphene/MoS2 heterostructures. Sci. Rep. 2014, 4, 4673.CrossRefGoogle Scholar
  59. [59]
    Chou, S. W.; Lin, J. Y. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for highperformance supercapacitors. J. Electrochem. Soc. 2013, 160, D178–D182.CrossRefGoogle Scholar
  60. [60]
    Xing, Z. C.; Chu, Q. X.; Ren, X. B.; Ge, C. J.; Qusti, A. H.; Asiri, A. M.; Al Youbi, A. O.; Sun, X. P. Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 2014, 245, 463–467.CrossRefGoogle Scholar
  61. [61]
    Yang, Y.; Lun, Z. Y.; Xia, G. L.; Zheng, F. C.; He, M. N.; Chen, Q. W. Non-precious alloy encapsulated in nitrogendoped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environ. Sci. 2015, 8, 3563–3571.CrossRefGoogle Scholar
  62. [62]
    Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.CrossRefGoogle Scholar
  63. [63]
    Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mohammad Al-Mamun
    • 1
  • Huajie Yin
    • 1
  • Porun Liu
    • 1
  • Xintai Su
    • 1
    • 2
  • Haimin Zhang
    • 3
  • Huagui Yang
    • 1
  • Dan Wang
    • 1
  • Zhiyong Tang
    • 1
  • Yun Wang
    • 1
  • Huijun Zhao
    • 1
    • 3
  1. 1.Centre for Clean Environment and EnergyGriffith University, Gold Coast CampusSouthportAustralia
  2. 2.Ministry Key Laboratory of Oil and Gas Fine Chemicals, College of Chemistry and Chemical EngineeringXinjiang UniversityUrumqiChina
  3. 3.Centre for Environmental and Energy Nanomaterials, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations