Nano Research

, Volume 10, Issue 10, pp 3509–3521 | Cite as

Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS)

  • Bo Jiang
  • Li Xu
  • Wei Chen
  • Chao Zou
  • Yun YangEmail author
  • Yunzhi FuEmail author
  • Shaoming HuangEmail author
Research Article


AgNO3 is often used in the preparation of Au nanostructures since Ag-based substances (AgBS) can selectively be adsorbed on Au(100) and significantly modulate the growth of Au nanocrystals. High-index-faceted Au nanostructures have demonstrated excellent performance in catalysis and surface enhanced Raman scattering (SERS), thus attracting the interest of many researchers in the past several decades. Herein, high-index-faceted Pd@Au concave nanocubes (CNCs) were prepared using AgBS as growth-directing agents in the heterogeneous growth of Au on Pd nanocubes (NCs). During the growth of Pd@Au CNCs, Au atoms are initially deposited on the Pd{100} facets leading to the formation of thin Au shells, and then AgBS are quickly adsorbed on the formed Au(100), favoring the growth along <111> and the formation of Pd@Au CNCs. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), high angle annular dark field (HAADF), and scanning transmission electron microscopy EDS (STEM-EDS) were used to systematically investigate the growth of Pd@Au CNCs. We also demonstrated that the high-index-faceted Pd@Au CNCs exhibited excellent SERS performances.


heterogeneous growth nanocube concave seeded growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 21471117, 21173159, 21563009, and 51420105002).

Supplementary material

12274_2017_1562_MOESM1_ESM.pdf (3.9 mb)
Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS)


  1. [1]
    Du, X. J.; Fu, N. H.; Zhang, S. L.; Chen, C.; Wang, D. S.; Li, Y. D. Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Res. 2016, 9, 2681–2686.CrossRefGoogle Scholar
  2. [2]
    Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.CrossRefGoogle Scholar
  3. [3]
    Pang, B.; Zhao, Y. F.; Luehmann, H.; Yang, X.; Detering, L.; You, M.; Zhang, C.; Zhang, L.; Li, Z. Y.; Ren, Q. S. et al. 64Cu-doped PdCu@Au tripods: A multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment. ACS Nano 2016, 10, 3121–3131.CrossRefGoogle Scholar
  4. [4]
    Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; García de Abajo, F. J.; Fery, A.; Liz-Marzán, L. M. Controlled living nanowire growth: Precise control over the morphology and optical properties of AgAuAg bimetallic nanowires. Nano Lett. 2015, 15, 5427–5437.CrossRefGoogle Scholar
  5. [5]
    Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au–ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.CrossRefGoogle Scholar
  6. [6]
    Tsao, Y. C.; Rej, S.; Chiu, C. Y.; Huang, M. H. Aqueous phase synthesis of Au–Ag core–shell nanocrystals with tunable shapes and their optical and catalytic properties. J. Am. Chem. Soc. 2014, 136, 396–404.CrossRefGoogle Scholar
  7. [7]
    Bian, T.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Wu, J. B.; Yang, H.; Yang, D. R. Epitaxial growth of twinned Au–Pt core–Shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 2015, 15, 7808–7815.CrossRefGoogle Scholar
  8. [8]
    Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.CrossRefGoogle Scholar
  9. [9]
    Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Sun, Y. G.; Yin, Y. D. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties. Adv. Mater. 2010, 22, 1905–1909.CrossRefGoogle Scholar
  10. [10]
    Wang, F.; Li, C. H.; Sun, L. D.; Wu, H. S.; Ming, T.; Wang, J. F.; Yu, J. C.; Yan, C. H. Heteroepitaxial growth of highindex- faceted palladium nanoshells and their catalytic performance. J. Am. Chem. Soc. 2011, 133, 1106–1111.CrossRefGoogle Scholar
  11. [11]
    Zhang, Q. F.; Han, L. L.; Jing, H.; Blom, D. A.; Lin, Y.; Xin, H. L.; Wang, H. Facet control of gold nanorods. ACS Nano 2016, 10, 2960–2974.CrossRefGoogle Scholar
  12. [12]
    Wang, Z. N.; Yang, G.; Zhang, Z. R.; Jin, M. S.; Yin, Y. D. Selectivity on etching: Creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 2016, 10, 4559–4564.CrossRefGoogle Scholar
  13. [13]
    Yang, C. W.; Chanda, K.; Lin, P. H.; Wang, Y. N.; Liao, C. W.; Huang, M. H. Fabrication of Au–Pd core–shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J. Am. Chem. Soc. 2011, 133, 19993–20000.CrossRefGoogle Scholar
  14. [14]
    Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.CrossRefGoogle Scholar
  15. [15]
    Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.CrossRefGoogle Scholar
  16. [16]
    Wu, B. H.; Zheng, N. F. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 2013, 8, 168–197.CrossRefGoogle Scholar
  17. [17]
    Zhang, L.; Niu, W. X.; Gao, W. Y.; Majeed, S.; Liu, Z. Y.; Zhao, J. M.; Anjum, S.; Xu, G. B. Synthesis and electrocatalytic properties of tetrahexahedral, polyhedral, and branched Pd@Au core–shell nanocrystals. Chem. Commun. 2013, 49, 8836–8838.CrossRefGoogle Scholar
  18. [18]
    Zheng, Z. K.; Tachikawa, T.; Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 2015, 137, 948–957.CrossRefGoogle Scholar
  19. [19]
    Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.CrossRefGoogle Scholar
  20. [20]
    Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.CrossRefGoogle Scholar
  21. [21]
    Yu, Y.; Zhang, Q. B.; Yao, Q. F.; Xie, J. P.; Lee, J. Y. Architectural design of heterogeneous metallic nanocrystalsprinciples and processes. Acc. Chem. Res. 2014, 47, 3530–3540.CrossRefGoogle Scholar
  22. [22]
    Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.CrossRefGoogle Scholar
  23. [23]
    Hu, Y. X.; Liu, Y. Z.; Li, Z.; Sun, Y. G. Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells: Synthesis and photo-enhanced catalysis. Adv. Funct. Mater. 2014, 24, 2828–2836.CrossRefGoogle Scholar
  24. [24]
    Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem., Int. Ed. 2010, 49, 2917–2921.CrossRefGoogle Scholar
  25. [25]
    Wang, Z. N.; Chen, Z. Z.; Zhang, H.; Zhang, Z. R.; Wu, H. J.; Jin, M. S.; Wu, C.; Yang, D. R.; Yin, Y. D. Latticemismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 2015, 9, 3307–3313.CrossRefGoogle Scholar
  26. [26]
    Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.CrossRefGoogle Scholar
  27. [27]
    Ruan, L. Y.; Ramezani Dakhel, H.; Lee, C.; Li, Y. J.; Duan, X. F.; Heinz, H.; Huang, Y. A rational biomimetic approach to structure defect generation in colloidal nanocrystals. ACS Nano 2014, 8, 6934–6944.CrossRefGoogle Scholar
  28. [28]
    Shi, Q. R.; Zhang, P. N.; Li, Y. J.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Synthesis of open-mouthed, yolk–shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chem. Sci. 2015, 6, 4350–4357.CrossRefGoogle Scholar
  29. [29]
    Jang, H. J.; Ham, S.; Jr Acapulco, J. A.; Song, Y.; Hong, S.; Shuford, K. L.; Park, S. Fabrication of 2D Au nanorings with Pt framework. J. Am. Chem. Soc. 2014, 136, 17674–17680.CrossRefGoogle Scholar
  30. [30]
    Kang, S. W.; Lee, Y. W.; Park, Y.; Choi, B. S.; Hong, J. W.; Park, K. H.; Han, S. W. One-pot synthesis of trimetallic Au@PdPt core–shell nanoparticles with high catalytic performance. ACS Nano 2013, 7, 7945–7955.CrossRefGoogle Scholar
  31. [31]
    Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163–2171.CrossRefGoogle Scholar
  32. [32]
    Personick, M. L.; Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 18238–18247.CrossRefGoogle Scholar
  33. [33]
    Luo, M.; Ruditskiy, A.; Peng, H. C.; Tao, J.; Figueroa Cosme, L.; He, Z. K.; Xia, Y. N. Penta-twinned copper nanorods: Facile synthesis via seed-mediated growth and their tunable plasmonic properties. Adv. Funct. Mater. 2016, 26, 1209–1216.CrossRefGoogle Scholar
  34. [34]
    Zhang, Q. F.; Zhou, Y. D.; Villarreal, E.; Lin, Y.; Zou, S. L.; Wang, H. Faceted gold nanorods: Nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett. 2015, 15, 4161–4169.CrossRefGoogle Scholar
  35. [35]
    Gilroy, K. D.; Hughes, R. A.; Neretina, S. Kinetically controlled nucleation of silver on surfactant-free gold seeds. J. Am. Chem. Soc. 2014, 136, 15337–15345.CrossRefGoogle Scholar
  36. [36]
    Feng, Y. H.; Wang, Y. W.; He, J. T.; Song, X. H.; Tay, Y. Y.; Hng, H. H.; Ling, X. Y.; Chen, H. Y. Achieving sitespecificity in multistep colloidal synthesis. J. Am. Chem. Soc. 2015, 137, 7624–7627.CrossRefGoogle Scholar
  37. [37]
    Lee, J. H.; Gibson, K. J.; Chen, G.; Weizmann, Y. Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nat. Commun. 2015, 6, 7571.CrossRefGoogle Scholar
  38. [38]
    DeSantis, C. J.; Peverly, A. A.; Peters, D. G.; Skrabalak, S. E. Octopods versus concave nanocrystals: Control of morphology by manipulating the kinetics of seeded growth via co-reduction. Nano Lett. 2011, 11, 2164–2168.CrossRefGoogle Scholar
  39. [39]
    Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.CrossRefGoogle Scholar
  40. [40]
    Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.CrossRefGoogle Scholar
  41. [41]
    Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. C. The role of bromide ions in seeding growth of Au nanorods. Langmuir 2010, 26, 10271–10276.CrossRefGoogle Scholar
  42. [42]
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393.CrossRefGoogle Scholar
  43. [43]
    Li, X. L.; Yang, Y.; Zhou, G. J.; Han, S. H.; Wang, W. F.; Zhang, L. J.; Chen, W.; Zou, C.; Huang, S. M. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance. Nanoscale 2013, 5, 4976–4985.CrossRefGoogle Scholar
  44. [44]
    Fang, C. H.; Zhao, G. L.; Xiao, Y. L.; Zhao, J.; Zhang, Z. J.; Geng, B. Y. Facile growth of high-yield gold nanobipyramids induced by chloroplatinic acid for high refractive index sensing properties. Sci. Rep. 2016, 6, 36706.CrossRefGoogle Scholar
  45. [45]
    Kou, X. S.; Ni, W. H.; Tsung, C. K.; Chan, K.; Lin, H. Q.; Stucky, G. D.; Wang, J. F. Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small 2007, 3, 2103–2113.CrossRefGoogle Scholar
  46. [46]
    Sau, T. K.; Rogach, A. L. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.CrossRefGoogle Scholar
  47. [47]
    Zhang, X.; Tsuji, M.; Lim, S.; Miyamae, N.; Nishio, M.; Hikino, S.; Umezu, M. Synthesis and growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles. Langmuir 2007, 23, 6372–6376.CrossRefGoogle Scholar
  48. [48]
    Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem. 2004, 116, 3759–3763.CrossRefGoogle Scholar
  49. [49]
    Seo, D.; Park, J. C.; Song, H. Polyhedral gold nanocrystals with Oh symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863–14870.CrossRefGoogle Scholar
  50. [50]
    Tran, T. T.; Lu, X. M. Synergistic effect of Ag and Pd ions on shape-selective growth of polyhedral Au nanocrystals with high-index facets. J. Phys. Chem. C 2011, 115, 3638–3645.CrossRefGoogle Scholar
  51. [51]
    Luo, M.; Huang, H. W.; Choi, S. I.; Zhang, C.; da Silva, R. R.; Peng, H. C.; Li, Z. Y.; Liu, J. Y.; He, Z. K.; Xia, Y. N. Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using Pd decahedra of 16 nm in size as seeds. ACS Nano 2015, 9, 10523–10532.CrossRefGoogle Scholar
  52. [52]
    Yu, Y.; Zhang, Q. B.; Xie, J. P.; Lee, J. Y. Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nat. Commun. 2013, 4, 1454.CrossRefGoogle Scholar
  53. [53]
    Xie, S. F.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Xia, Y. N. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: The roles of capping agent and surface diffusion. J. Am. Chem. Soc. 2013, 135, 16658–16667.CrossRefGoogle Scholar
  54. [54]
    DeSantis, C. J.; Skrabalak, S. E. Core values: Elucidating the role of seed structure in the synthesis of symmetrically branched nanocrystals. J. Am. Chem. Soc. 2013, 135, 10–13.CrossRefGoogle Scholar
  55. [55]
    Wang, F.; Sun, L. D.; Feng, W.; Chen, H. J.; Yeung, M. H.; Wang, J. F.; Yan, C. H. Heteroepitaxial growth of core–shell and core-multishell nanocrystals composed of palladium and gold. Small 2010, 6, 2566–2575.CrossRefGoogle Scholar
  56. [56]
    Xu, L.; Wang, K.; Jiang, B.; Chen, W.; Liu, F. Y.; Hao, H.; Zou, C.; Yang, Y.; Huang, S. M. Competitive effect in the growth of Pd–Au–Pd segmental nanorods. Chem. Mater. 2016, 28, 7394–7403.CrossRefGoogle Scholar
  57. [57]
    Liu, M. Z.; Guyot Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.CrossRefGoogle Scholar
  58. [58]
    Zheng, Y. Q.; Tao, J.; Liu, H. Y.; Zeng, J.; Yu, T.; Ma, Y. Y.; Moran, C.; Wu, L. J.; Zhu, Y. M.; Liu, J. Y. et al. Facile synthesis of gold nanorice enclosed by high-index facets and its application for CO oxidation. Small 2011, 7, 2307–2312.CrossRefGoogle Scholar
  59. [59]
    Yu, Y.; Zhang, Q. B.; Yao, Q. F.; Xie, J. P.; Lee, J. Y. Guiding principles in the galvanic replacement reaction of an underpotentially deposited metal layer for site-selective deposition and shape and size control of satellite nanocrystals. Chem. Mater. 2013, 25, 4746–4756.CrossRefGoogle Scholar
  60. [60]
    Herrero, E.; Buller, L. J.; Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897–7930.CrossRefGoogle Scholar
  61. [61]
    Zhou, G. J.; Yang, Y.; Han, S. H.; Chen, W.; Fu, Y. Z.; Zou, C.; Zhang, L. J.; Huang, S. M. Growth of nanobipyramid by using large sized Au decahedra as seeds. ACS Appl. Mater. Interfaces 2013, 5, 13340–13352.CrossRefGoogle Scholar
  62. [62]
    Seo, D.; Park, J. H.; Jung, J.; Park, S. M.; Ryu, S.; Kwak, J.; Song, H. One-dimensional gold nanostructures through directed anisotropic overgrowth from gold decahedrons. J. Phys. Chem. C 2009, 113, 3449–3454.CrossRefGoogle Scholar
  63. [63]
    Zhang, L.; Niu, W. X.; Zhao, J. M.; Zhu, S. Y.; Yuan, Y. L.; Yuan, T.; Hu, L. Z.; Xu, G. B. Pd@Au core–shell nanocrystals with concave cubic shapes: Kinetically controlled synthesis and electrocatalytic properties. Faraday Discuss. 2013, 164, 175–188.CrossRefGoogle Scholar
  64. [64]
    Zhang, L.; Niu, W. X.; Gao, W. Y.; Qi, L. M.; Lai, J. P.; Zhao, J. M.; Xu, G. B. Synthesis of convex hexoctahedral palladium@gold core–shell nanocrystals with {431} highindex facets with remarkable electrochemiluminescence activities. ACS Nano 2014, 8, 5953–5958.CrossRefGoogle Scholar
  65. [65]
    Yin, Y. D.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 2006, 128, 12671–12673.CrossRefGoogle Scholar
  66. [66]
    DuChene, J. S.; Niu, W. X.; Abendroth, J. M.; Sun, Q.; Zhao, W. B.; Huo, F. W.; Wei, W. D. Halide anions as shapedirecting agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2013, 25, 1392–1399.CrossRefGoogle Scholar
  67. [67]
    Zhang, L.; Niu, W. X.; Li, Z. Y.; Xu, G. B. Facile synthesis and electrochemiluminescence application of concave trisoctahedral Pd@Au core–shell nanocrystals bound by {331} high-index facets. Chem. Commun. 2011, 47, 10353–10355.CrossRefGoogle Scholar
  68. [68]
    Wang, A. N.; Peng, Q.; Li, Y. D. Rod-shaped Au–Pd core–shell nanostructures. Chem. Mater. 2011, 23, 3217–3222.CrossRefGoogle Scholar
  69. [69]
    Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nanocrystals. J. Am. Chem. Soc. 2012, 134, 15822–15831.CrossRefGoogle Scholar
  70. [70]
    Liu, M. C.; Gilroy, K. D.; Peng, H. C.; Chi, M.; Guo, L. J.; Xia, Y. N. The effect of surface capping on the diffusion of adatoms in the synthesis of Pd@Au core–shell nanocrystals. Chem. Commun. 2016, 52, 13159–13162.CrossRefGoogle Scholar
  71. [71]
    Li, J.; Zheng, Y. Q.; Zeng, J.; Xia, Y. N. Controlling the size and morphology of Au@Pd core–shell nanocrystals by manipulating the kinetics of seeded growth. Chem.—Eur. J. 2012, 18, 8150–8156.CrossRefGoogle Scholar
  72. [72]
    Hong, J. W.; Lee, S. U.; Lee, Y. W.; Han, S. W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced Raman scattering properties. J. Am. Chem. Soc. 2012, 134, 4565–4568.CrossRefGoogle Scholar
  73. [73]
    Song, Y. H.; Miao, T. T.; Zhang, P. N.; Bi, C. X.; Xia, H. B.; Wang, D. Y.; Tao, X. T. {331}-faceted trisoctahedral gold nanocrystals: Synthesis, superior electrocatalytic performance and highly efficient SERS activity. Nanoscale 2015, 7, 8405–8415.CrossRefGoogle Scholar
  74. [74]
    Meng, M.; Fang, Z. C.; Zhang, C.; Su, H. Y.; He, R.; Zhang, R. P.; Li, H. L.; Li, Z. Y.; Wu, X. J.; Ma, C. et al. Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core–shell planar tetrapods with size-dependent optical properties. Nano Lett. 2016, 16, 3036–3041.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of Materials and Chemical EngineeringHainan UniversityHaikouChina
  2. 2.Nanomaterials and Chemistry Key LaboratoryWenzhou UniversityWenzhouChina

Personalised recommendations