Nano Research

, Volume 10, Issue 10, pp 3496–3508 | Cite as

Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy

  • Michele Schlich
  • Francesca Longhena
  • Gaia Faustini
  • Caitriona M. O’Driscoll
  • Chiara Sinico
  • Anna Maria Fadda
  • Arianna Bellucci
  • Francesco Lai
Research Article


Alpha-synuclein (α-syn) deposition in Lewy bodies (LB) is one of the main neuropathological hallmarks of Parkinson’s disease (PD). LB accumulation is considered a causative factor of PD, which suggests that strategies aimed at reducing α-syn levels could be relevant for its treatment. In the present study, we developed novel nanocarriers suitable for systemic delivery of small interfering ribonucleic acid (siRNA) that were specifically designed to reduce neuronal α-syn by RNA interference. Anionic liposomes loaded with an siRNA–protamine complex for α-syn gene silencing and decorated with a rabies virus glycoprotein (RVG)-derived peptide as a targeting agent were prepared. The nanoparticles were characterized for their ability to load, protect, and deliver the functional siRNA to mouse primary hippocampal and cortical neurons as well as their efficiency to induce gene silencing in these cells. Moreover, the nanocarriers were evaluated for their stability in serum. The RVG-decorated liposomes displayed suitable characteristics for future in vivo applications and successfully induced α-syn gene silencing in primary neurons without altering cell viability. Collectively, our results indicate that RVG-decorated liposomes may be an ideal tool for further studies aimed at achieving efficient in vivo α-syn gene silencing in mouse models of PD.


rabies virus glycoprotein (RVG) peptide liposomes small interfering ribonucleic acid (siRNA) alpha-synuclein primary neuronal cells Parkinson’s disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge Micaela Morelli for supporting the establishment of the collaboration between the groups participating to this study. M. S. thanks Angela Corona for fruitful discussions about the design and implementation of the project. A. B. is grateful to “Ambrosini Arredamenti SNC” for funding support within the project “Molecular Mechanisms, associated with Neurodegenerative Diseases” and the Italian Ministry of Education, University and Scientific Research—University of Brescia Ex 60% Research Funds.


  1. [1]
    Bendor, J. T.; Logan, T. P.; Edwards, R. H. The function of α-synuclein. Neuron 2013, 79, 1044–1066.CrossRefGoogle Scholar
  2. [2]
    McLean, P. J.; Kawamata, H.; Ribich, S.; Hyman, B. T. Membrane association and protein conformation of α-synuclein in intact neurons. Effect of parkinson’s disease-linked mutations. J. Biol. Chem. 2000, 275, 8812–8816.Google Scholar
  3. [3]
    Lashuel, H. A.; Overk, C. R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48.CrossRefGoogle Scholar
  4. [4]
    Bellucci, A.; Mercuri, N. B.; Venneri, A.; Faustini, G.; Longhena, F.; Pizzi, M.; Missale, C.; Spano, P. Parkinson’s disease: From synaptic loss to connectome dysfunction. Neuropathol. Appl. Neurobiol. 2016, 42, 77–94.CrossRefGoogle Scholar
  5. [5]
    Bellucci, A.; Zaltieri, M.; Navarria, L.; Grigoletto, J.; Missale, C.; Spano, P. From α-synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson’s disease. Brain Res. 2012, 1476, 183–202.CrossRefGoogle Scholar
  6. [6]
    Maraganore, D. M. Rationale for therapeutic silencing of alpha-synuclein in Parkinson’s disease. J. Mov. Disord. 2011, 4, 1–7.CrossRefGoogle Scholar
  7. [7]
    Specht, C. G.; Schoepfer, R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci. 2001, 2, 11.CrossRefGoogle Scholar
  8. [8]
    Spillantini, M. G.; Crowther, R. A.; Jakes, R.; Hasegawa, M.; Goedert, M. α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 1998, 95, 6469–6473.CrossRefGoogle Scholar
  9. [9]
    Braak, H.; DelTredici, K.; Rü b, U.; de Vos, R. A.; Jansen Steur, E. N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211.CrossRefGoogle Scholar
  10. [10]
    Eslamboli, A.; Romero Ramos, M.; Burger, C.; Bjorklund, T.; Muzyczka, N.; Mandel, R. J.; Baker, H.; Ridley, R. M.; Kirik, D.Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 2007, 130, 799–815.Google Scholar
  11. [11]
    Uversky, V. N. Neuropathology, biochemistry, and biophysics of α-synuclein aggregation. J. Neurochem. 2007, 103, 17–37.Google Scholar
  12. [12]
    Sapru, M. K.; Yates, J. W.; Hogan, S.; Jiang, L. X.; Halter, J.; Bohn, M. C. Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp. Neurol. 2006, 198, 382–390.CrossRefGoogle Scholar
  13. [13]
    O’Mahony, A. M.; Godinho, B. M. D. C.; Cryan, J. F.; O’Driscoll, C. M. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: Formulating the solution. J. Pharm. Sci. 2013, 102, 3469–3484.CrossRefGoogle Scholar
  14. [14]
    Lewis, J.; Melrose, H.; Bumcrot, D.; Hope, A.; Zehr, C.; Lincoln, S.; Braithwaite, A.; He, Z.; Ogholikhan, S.; Hinkle, K. et al. In vivo silencing of alpha-synuclein using naked siRNA. Mol. Neurodegener. 2008, 3, 19.CrossRefGoogle Scholar
  15. [15]
    McCormack, A. L.; Mak, S. K.; Henderson, J. M.; Bumcrot, D.; Farrer, M. J.; Di Monte, D. A. α-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS One 2010, 5, e12122.CrossRefGoogle Scholar
  16. [16]
    Gorbatyuk, O. S.; Li, S. D.; Nash, K.; Gorbatyuk, M.; Lewin, A. S.; Sullivan, L. F.; Mandel, R. J.; Chen, W. J.; Meyers, C.; Manfredsson, F. P. et al. In vivo RNAi-mediated α-synuclein silencing induces nigrostriatal degeneration. Mol. Ther. 2010, 18, 1450–1457.CrossRefGoogle Scholar
  17. [17]
    Nayak, S.; Herzog, R. W. Progress and prospects: Immune responses to viral vectors. Gene Ther. 2010, 17, 295–304.CrossRefGoogle Scholar
  18. [18]
    Li, C. X.; Parker, A.; Menocal, E.; Xiang, S. L.; Borodyansky, L.; Fruehauf, J. H. Delivery of RNA interference. Cell Cycle 2006, 5, 2103–2109.CrossRefGoogle Scholar
  19. [19]
    Haussecker, D. Current issues of RNAi therapeutics delivery and development. J. Control. Release 2014, 195, 49–54.CrossRefGoogle Scholar
  20. [20]
    Grimm, D. Small silencing RNAs: State-of-the-art. Adv. Drug Deliv. Rev. 2009, 61, 672–703.CrossRefGoogle Scholar
  21. [21]
    Yang, J.; Liu, H. M.; Zhang, X. Design, preparation and application of nucleic acid delivery carriers. Biotechnol. Adv. 2014, 32, 804–817.CrossRefGoogle Scholar
  22. [22]
    David, S.; Pitard, B.; Benoît, J. P.; Passirani, C. Non-viral nanosystems for systemic siRNA delivery. Pharmacol. Res. 2010, 62, 100–114.CrossRefGoogle Scholar
  23. [23]
    Cooper, J. M.; Wiklander, P. B. O.; Nordin, J. Z.; Al Shawi, R.; Wood, M. J.; Vithlani, M.; Schapira, A. H. V.; Simons, J. P.; El Andaloussi, S.; Alvarez Erviti, L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 2014, 29, 1476–1485.CrossRefGoogle Scholar
  24. [24]
    Alvarez Erviti, L.; Seow, Y.; Yin, H. F.; Betts, C.; Lakhal, S.; Wood, M. J. A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345.CrossRefGoogle Scholar
  25. [25]
    Kumar, P.; Wu, H. Q.; McBride, J. L.; Jung, K. E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448, 39–43.CrossRefGoogle Scholar
  26. [26]
    Robbins, P. D.; Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 2014, 14, 195–208.CrossRefGoogle Scholar
  27. [27]
    Vader, P.; Mol, E. A.; Pasterkamp, G.; Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148–156.CrossRefGoogle Scholar
  28. [28]
    De Luca, M. A.; Lai, F.; Corrias, F.; Caboni, P.; Bimpisidis, Z.; Maccioni, E.; Fadda, A. M.; Di Chiara, G. Lactoferrin- and antitransferrin-modified liposomes for brain targeting of the NK3 receptor agonist senktide: Preparation and in vivo evaluation. Int. J. Pharm. 2015, 479, 129–137.CrossRefGoogle Scholar
  29. [29]
    Ozpolat, B.; Sood, A. K.; Lopez Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 110–116.CrossRefGoogle Scholar
  30. [30]
    Li, W. J.; Szoka, F. C. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 2007, 24, 438–449.CrossRefGoogle Scholar
  31. [31]
    Buyens, K.; Demeester, J.; De Smedt, S. S.; Sanders, N. N. Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes. Langmuir 2009, 25, 4886–4891.CrossRefGoogle Scholar
  32. [32]
    Huo, H.; Gao, Y. K.; Wang, Y.; Zhang, J. H.; Wang, Z. Y.; Jiang, T. Y.; Wang, S. L. Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain. J. Colloid Interface Sci. 2015, 447, 8–15.CrossRefGoogle Scholar
  33. [33]
    Hamidi, M.; Azadi, A.; Rafiei, P. Pharmacokinetic consequences of pegylation. Drug Deliv. 2006, 13, 399–409.CrossRefGoogle Scholar
  34. [34]
    Lafon, M. Rabies virus receptors. J. Neurovirol. 2005, 11, 82–87.CrossRefGoogle Scholar
  35. [35]
    Bauer, M.; Kristensen, B. W.; Meyer, M.; Gasser, T.; Widmer, H. R.; Zimmer, J.; Ueffing, M. Toxic effects of lipid-mediated gene transfer in ventral mesencephalic explant cultures. Basic Clin. Pharmacol. Toxicol. 2006, 98, 395–400.CrossRefGoogle Scholar
  36. [36]
    Zaltieri, M.; Grigoletto, J.; Longhena, F.; Navarria, L.; Favero, G.; Castrezzati, S.; Colivicchi, M. A.; Della Corte, L.; Rezzani, R.; Pizzi, M. et al. α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J. Cell Sci. 2015, 128, 2231–2243.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Michele Schlich
    • 1
  • Francesca Longhena
    • 2
  • Gaia Faustini
    • 2
  • Caitriona M. O’Driscoll
    • 3
  • Chiara Sinico
    • 1
  • Anna Maria Fadda
    • 1
  • Arianna Bellucci
    • 2
  • Francesco Lai
    • 1
  1. 1.Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
  2. 2.Division of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
  3. 3.Pharmacodelivery Group, School of PharmacyUniversity College CorkCorkIreland

Personalised recommendations