Nano Research

, Volume 10, Issue 10, pp 3486–3495 | Cite as

Solid ion transition route to 3D S–N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions

Research Article

Abstract

A novel metal-free bulk nanocatalyst, S–N-codoped hollow carbon nanosphere/graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS is used as the hard template and S source, while polydopamine acts as a reducing agent and carbon source. At a high annealing temperature, Zn metal is reduced and evaporates, leaving only free S vapor to diffuse into the carbon layer. Interestingly, the as-obtained SNC-GA-1000 exhibits much higher catalytic activity in an organic reduction reaction than unloaded bare S–N-codoped carbon nanospheres. Hydrothermal reduction of the graphene oxide sheets loaded with ZnS@polydopamine core–shell nanospheres (ZnS@PDA) affords a three-dimensional bulk graphene aerogel. Although nanosized catalysts exhibit high catalytic activities, their subsequent separation is not always satisfactory, making post-treatment difficult. This approach achieves a trade-off between activity and separability. More importantly, due to the 3D structural nature, such bulk and handheld nanocatalysts can be easily separated and recycled.

Keywords

bulk nanocatalyst solid ion transition graphene aerogel S–N-codoped metal-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1560_MOESM1_ESM.pdf (4.7 mb)
Solid ion transition route to 3D S–N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions

References

  1. [1]
    Yao, W.; Li, F.-L.; Li, H.-X.; Lang, J.-P. Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J. Mater. Chem. A 2015, 3, 4578–4585.CrossRefGoogle Scholar
  2. [2]
    Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.CrossRefGoogle Scholar
  3. [3]
    Xi, J. B.; Xiao, J. W.; Xiao, F.; Jin, Y. X.; Dong, Y.; Jing, F.; Wang, S. Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci. Rep. 2016, 6, 21904.CrossRefGoogle Scholar
  4. [4]
    Zhang, Z. Y.; Sun, T.; Chen, C.; Xiao, F.; Gong, Z.; Wang, S. Bifunctional nanocatalyst based on three-dimensional carbon nanotube–graphene hydrogel supported Pd nanoparticles: One-pot synthesis and its catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 21035–21040.CrossRefGoogle Scholar
  5. [5]
    Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.CrossRefGoogle Scholar
  6. [6]
    Akhter, T.; Islam, M. M.; Faisal, S. N.; Haque, E.; Minett, A. I.; Liu, H. K.; Konstantinov, K.; Dou, S. X. Self-assembled N/S codoped flexible graphene paper for high performance energy storage and oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 2078–2087.CrossRefGoogle Scholar
  7. [7]
    Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRefGoogle Scholar
  8. [8]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  9. [9]
    Zhuo, L. H.; Wu, Y. Q.; Wang, L. Y.; Ming, J.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 3954–3960.CrossRefGoogle Scholar
  10. [10]
    Su, C. L.; Tandiana, R.; Balapanuru, J.; Tang, W.; Pareek, K.; Nai, C. T.; Hayashi, T.; Loh, K. P. Tandem catalysis of amines using porous graphene oxide. J. Am. Chem. Soc. 2015, 137, 685–690.CrossRefGoogle Scholar
  11. [11]
    Zhang, Z. Y.; Xiao, F.; Xi, J. B.; Sun, T.; Xiao, S.; Wang, H. R.; Wang, S.; Liu, Y. Q. Encapsulating Pd nanoparticles in double-shelled graphene@carbon hollow spheres for excellent chemical catalytic property. Sci. Rep. 2014, 4, 4053.CrossRefGoogle Scholar
  12. [12]
    Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773.CrossRefGoogle Scholar
  13. [13]
    Jin, Y. X.; Xi, J. B.; Zhang, Z. Y.; Xiao, J. W.; Xiao, F.; Qian, L. H.; Wang, S. An ultra-low Pd loading nanocatalyst with efficient catalytic activity. Nanoscale 2015, 7, 5510–5515.CrossRefGoogle Scholar
  14. [14]
    Cai, S. F.; Wang, D. S.; Niu, Z. Q.; Li, Y. D. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese J. Catal. 2013, 34, 1964–1974.CrossRefGoogle Scholar
  15. [15]
    Rong, H. P.; Cai, S. F.; Niu, Z. Q.; Li, Y. D. Compositiondependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal. 2013, 3, 1560–1563.CrossRefGoogle Scholar
  16. [16]
    Rong, H. P.; Niu, Z. Q.; Zhao, Y. F.; Cheng, H.; Li, Z.; Ma, L.; Li, J.; Wei, S. Q.; Li, Y. D. Structure evolution and associated catalytic properties of Pt-Sn bimetallic nanoparticles. Chem.—Eur. J. 2015, 21, 12034–12041.CrossRefGoogle Scholar
  17. [17]
    Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211.CrossRefGoogle Scholar
  18. [18]
    Chaudhari, N. K.; Song, M. Y.; Yu, J. S. Heteroatom-doped highly porous carbon from human urine. Sci. Rep. 2014, 4, 5221.CrossRefGoogle Scholar
  19. [19]
    Kang, X. C.; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Synthesis of supported ultrafine non-noble subnanometer-scale metal particles derived from metal-organic frameworks as highly efficient heterogeneous catalysts. Angew. Chem. 2016, 128, 1092–1096.CrossRefGoogle Scholar
  20. [20]
    Matter, P. H.; Ozkan, U. S. Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 2006, 109, 115–123.CrossRefGoogle Scholar
  21. [21]
    Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.Google Scholar
  22. [22]
    Zhang, J.; Li, J. J.; Wang, Z. L.; Wang, X. N.; Feng, W.; Zheng, W.; Cao, W. W.; Hu, P. A. Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 2014, 26, 2460–2466.CrossRefGoogle Scholar
  23. [23]
    Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.CrossRefGoogle Scholar
  24. [24]
    Li, N.; Wang, Z. Y.; Zhao, K. K.; Shi, Z. J.; Gu, Z. N.; Xu, S. K. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010, 48, 255–259.CrossRefGoogle Scholar
  25. [25]
    Wang, F.; Song, S. Y.; Li, K.; Li, J. Q.; Pan, J.; Yao, S.; Ge, X.; Feng, J.; Wang, X.; Zhang, H. J. A “solid dual-ionstransformation” route to S,N co-doped carbon nanotubes as highly efficient “metal-free” catalysts for organic reactions. Adv. Mater. 2016, 28, 10679–10683.CrossRefGoogle Scholar
  26. [26]
    Li, X.-H.; Li, H.-B.; Li, G.-D.; Chen, J.-S. General synthesis of uniform metal sulfide colloidal particles via autocatalytic surface growth: A self-correcting system. Inorg. Chem. 2009, 48, 3132–3138.CrossRefGoogle Scholar
  27. [27]
    Nafiujjaman, M.; Nurunnabi, M.; Kang, S.-H.; Reeck, G. R.; Khan, H. A.; Lee, Y.-K. Ternary graphene quantum dotpolydopamine- Mn3O4 nanoparticles for optical imaging guided photodynamic therapy and T1-weighted magnetic resonance imaging. J. Mater. Chem. B 2015, 3, 5815–5823.CrossRefGoogle Scholar
  28. [28]
    Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Highthroughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.CrossRefGoogle Scholar
  29. [29]
    Qiang, W. B.; Li, W.; Li, X. Q.; Chen, X.; Xu, D. K. Bioinspired polydopamine nanospheres: A superquencher for fluorescence sensing of biomolecules. Chem. Sci. 2014, 5, 3018–3024.CrossRefGoogle Scholar
  30. [30]
    Chen, W. F.; Yan, L. F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011, 3, 3132–3137.CrossRefGoogle Scholar
  31. [31]
    Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.CrossRefGoogle Scholar
  32. [32]
    Cao, H. L.; Zhou, X. F.; Qin, Z. H.; Liu, Z. P. Lowtemperature preparation of nitrogen-doped graphene for supercapacitors. Carbon 2013, 56, 218–223.CrossRefGoogle Scholar
  33. [33]
    He, J. T.; Ji, W. J.; Yao, L.; Wang, Y. W.; Khezri, B.; Webster, R. D.; Chen, H. Y. Strategy for nano-catalysis in a fixed-bed system. Adv. Mater. 2014, 26, 4151–4155.CrossRefGoogle Scholar
  34. [34]
    Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2010, 26, 2885–2893.CrossRefGoogle Scholar
  35. [35]
    Li, J.; Liu, C.-Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426–8430.CrossRefGoogle Scholar
  36. [36]
    Lu, X. M.; Sun, Y. T.; Chen, Z.; Gao, Y. F. A multi-functional textile that combines self-cleaning, water-proofing and VO2-based temperature-responsive thermoregulating. Sol. Energ. Mat. Sol. C. 2017, 159, 102–111.CrossRefGoogle Scholar
  37. [37]
    Kong, X.-K.; Sun, Z.-Y.; Chen, M.; Chen, C. L.; Chen, Q.-W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by n-doped graphene. Energy Environ. Sci. 2013, 6, 3260–3266.CrossRefGoogle Scholar
  38. [38]
    Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992–4006.CrossRefGoogle Scholar
  39. [39]
    Gao, L.; Li, R.; Sui, X. L.; Li, R.; Chen, C. L.; Chen, Q. W. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ. Sci. Technol. 2014, 48, 10191–10197.CrossRefGoogle Scholar
  40. [40]
    Huang, G.; Yang, L.; Ma, X.; Jiang, J.; Yu, S. H.; Jiang, H. L. Metal–organic framework-templated porous carbon for highly efficient catalysis: The critical role of pyrrolic nitrogen species. Chem.—Eur. J. 2016, 22, 3470–3477.CrossRefGoogle Scholar
  41. [41]
    Kong, X. K.; Chen, Q. W.; Lun, Z. Y. Probing the influence of different oxygenated groups on graphene oxide’s catalytic performance. J. Mater. Chem. A 2014, 2, 610–613.CrossRefGoogle Scholar
  42. [42]
    Gazi, S.; Ananthakrishnan, R. Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Appl. Catal. B 2011, 105, 317–325.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations