Nano Research

, Volume 10, Issue 10, pp 3476–3485 | Cite as

Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor

  • Shuo Liu
  • Qingliang Liao
  • Zheng Zhang
  • Xiankun Zhang
  • Shengnan Lu
  • Lixin Zhou
  • Mengyu Hong
  • Zhuo Kang
  • Yue Zhang
Research Article
  • 59 Downloads

Abstract

The mixed-dimensional van der Waals (vdW) heterostructure is a promising building block for strained electronics and optoelectronics because it avoids the bond fracture and atomic reconstruction under strain. We propose a novel mixed-dimensional vdW heterostructure between two-dimensional graphene and a one-dimensional ZnO nanowire for high-performance photosensing. By utilizing the piezoelectric properties of ZnO, strain modulation was accomplished in the mixed-dimensional vdW heterostructure to optimize the device performance. By combining the ultrahigh electrons transfer speed in graphene and the extremely long life time of holes in ZnO, an outstanding responsivity of 1.87 × 105 A/W was achieved. Under a tensile strain of only 0.44% on the ZnO nanowire, the responsivity was enhanced by 26%. A competitive model was proposed, in which the performance enhancement is due to the efficient promotion of the injection of photogenerated electrons from the ZnO into the graphene caused by the strain-induced positive piezopotential. Our study provides a strain-engineering strategy for controlling the behavior of the photocarriers in the mixed-dimensional vdW heterostructure, which can be also applied to other similar systems in the future.

Keywords

graphene ZnO nanowire vdW heterostructure strain modulation photosensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1559_MOESM1_ESM.pdf (1 mb)
Strain modulation on graphene/ZnO nanowire mixed-dimensional van der Waals heterostructure for high-performance photosensor

References

  1. [1]
    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.CrossRefGoogle Scholar
  2. [2]
    Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.CrossRefGoogle Scholar
  3. [3]
    Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.CrossRefGoogle Scholar
  4. [4]
    Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.CrossRefGoogle Scholar
  5. [5]
    Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Lightemitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.CrossRefGoogle Scholar
  6. [6]
    Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.CrossRefGoogle Scholar
  7. [7]
    Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.CrossRefGoogle Scholar
  8. [8]
    Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.CrossRefGoogle Scholar
  9. [9]
    Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.CrossRefGoogle Scholar
  10. [10]
    Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.CrossRefGoogle Scholar
  11. [11]
    Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for highperformance broadband photodetectors. Nat. Commun. 2015, 6, 8589.CrossRefGoogle Scholar
  12. [12]
    Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K. E.; Kim, P.; Yoo, I.; Chung, H. J.; Kim, K. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science 2012, 336, 1140–1143.CrossRefGoogle Scholar
  13. [13]
    Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.CrossRefGoogle Scholar
  14. [14]
    Shao, D. L.; Gao, J.; Chow, P.; Sun, H. T.; Xin, G. Q.; Sharma, P.; Lian, J.; Koratkar, N. A.; Sawyer, S. Organicinorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Lett. 2015, 15, 3787–3792.CrossRefGoogle Scholar
  15. [15]
    Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G.-A.; Lau, S.-P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.CrossRefGoogle Scholar
  16. [16]
    Wang, Z. H.; Li, M. Z.; Yang, L.; Zhang, Z. D.; Gao, X. P. A. Broadband photovoltaic effect of n-type topological insulator Bi2Te3 films on p-type Si substrates. Nano Res. 2017, 10, 1872–1879.CrossRefGoogle Scholar
  17. [17]
    Liu, Y. J.; Liu, Y. D.; Qin, S. C.; Xu, Y. B.; Zhang, R.; Wang, F. Q. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2017, 10, 1880–1887.CrossRefGoogle Scholar
  18. [18]
    Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S. M.; Wang, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 2015, 14, 257–275.CrossRefGoogle Scholar
  19. [19]
    Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.CrossRefGoogle Scholar
  20. [20]
    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  21. [21]
    Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.CrossRefGoogle Scholar
  22. [22]
    Liu, S.; Liao, Q. L.; Lu, S. N.; Zheng, Z.; Zhang, G. J.; Zhang, Y. Strain modulation in graphene/ZnO nanorod film schottky junction for enhanced photosensing performance. Adv. Funct. Mater. 2016, 26, 1347–1353.CrossRefGoogle Scholar
  23. [23]
    Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.CrossRefGoogle Scholar
  24. [24]
    Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarizationenhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.CrossRefGoogle Scholar
  25. [25]
    Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.CrossRefGoogle Scholar
  26. [26]
    Liu, X. Q.; Yang, X. N.; Gao, G. Y.; Yang, Z. Y.; Liu, H. T.; Li, Q.; Lou, Z.; Shen, G. Z.; Liao, L.; Pan, C. F. et al. Enhancing photoresponsivity of self-aligned MoS2 field-effect transistors by piezo-phototronic effect from GaN nanowires. ACS Nano 2016, 10, 7451–7457.CrossRefGoogle Scholar
  27. [27]
    Xue, F.; Chen, L. B.; Chen, J.; Liu, J. B.; Wang, L. F.; Chen, M. X.; Pang, Y. K.; Yang, X. N.; Gao, G. Y.; Zhai, J. Y. et al. P-type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 2016, 28, 3391–3398.CrossRefGoogle Scholar
  28. [28]
    Reina, A.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of singleand few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.CrossRefGoogle Scholar
  29. [29]
    Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  30. [30]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D. D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  31. [31]
    Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.CrossRefGoogle Scholar
  32. [32]
    Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, 1981.Google Scholar
  33. [33]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y. S.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  34. [34]
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.CrossRefGoogle Scholar
  35. [35]
    Guo, W. H.; Xu, S. G.; Wu, Z. F.; Wang, N.; Loy, M. M. T.; Du, S. W. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 2013, 9, 3031–3036.CrossRefGoogle Scholar
  36. [36]
    Liu, J. W.; Lu, R. T.; Xu, G. W.; Wu, J.; Thapa, P.; Moore, D. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene: Towards high-performance nanohybrid ultraviolet photodetectors. Adv. Funct. Mater. 2013, 23, 4941–4948.CrossRefGoogle Scholar
  37. [37]
    Boruah, B. D.; Mukherjee, A.; Sridhar, S.; Misra, A. Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection. ACS Appl. Mater. Interfaces 2015, 7, 10606–10611.CrossRefGoogle Scholar
  38. [38]
    Chang, H. X.; Sun, Z. H.; Ho, K. Y.-F.; Tao, X. M.; Yan, F.; Kwok, W.-M.; Zheng, Z. J. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/ graphene heterostructure. Nanoscale 2011, 3, 258–264.CrossRefGoogle Scholar
  39. [39]
    Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy Le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan Le, D.; Lee, N. E. Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector. Small 2015, 11, 3054–3065.CrossRefGoogle Scholar
  40. [40]
    Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shuo Liu
    • 1
  • Qingliang Liao
    • 1
  • Zheng Zhang
    • 1
  • Xiankun Zhang
    • 1
  • Shengnan Lu
    • 1
  • Lixin Zhou
    • 1
  • Mengyu Hong
    • 1
  • Zhuo Kang
    • 1
  • Yue Zhang
    • 1
    • 2
  1. 1.State Key Laboratory for Advanced Metals and Materials, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Municipal Key Laboratory for Advanced Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations