Nano Research

, Volume 10, Issue 10, pp 3457–3467 | Cite as

Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries

Research Article


A Co-based metal-organic framework (Co-MOF) with a unique three-dimensional starfish-like nanostructure was successfully synthesized using a simple ultrasonic method. After subsequent carbonization and oxidation, a nanocomposite of nitrogen-doped carbon with a Co3O4 coating (Co3O4@N-C) with a porous starfish-like nanostructure was obtained. The final hybrid exhibited excellent lithium storage performance when evaluated as an anode material in a lithiumion battery. A remarkable and stable discharge capacity of 795 mAh·g−1 was maintained at 0.5 A·g−1 after 300 cycles. Excellent rate capability was also obtained. In addition, a full Co3O4@N-C/LiFePO4 battery displayed stable capacity retention of 95% after 100 cycles. This excellent lithium storage performance is attributed to the unique porous starfish-like structure, which effectively buffers the volume expansion that occurs during Li+ insertion/deinsertion. Meanwhile, the nitrogendoped carbon coating enhances the electrical conductivity and provides a buffer layer to accommodate the volume change and accelerate the formation of a stable solid electrolyte interface layer.


cobaltosic oxide starfish-like structure nitrogen-doped carbon metal-organic framework lithium-ion battery long cycle life 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China (Nos. 21173001 and 21371003) and Anhui Province Key Laboratory of Environment-Friendly Polymer Materials.

Supplementary material

12274_2017_1557_MOESM1_ESM.pdf (489 kb)
Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries


  1. [1]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  2. [2]
    Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.CrossRefGoogle Scholar
  3. [3]
    Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.CrossRefGoogle Scholar
  4. [4]
    Zheng, F. C.; He, M. N.; Yang, Y.; Chen, Q. W. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as highperformance anodes for lithium-ion batteries. Nanoscale 2015, 7, 3410–3417.CrossRefGoogle Scholar
  5. [5]
    Zhao, Y.; Feng, Z. X.; Xu, Z. J. Yolk-shell Fe2O3 ? C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale 2015, 7, 9520–9525.CrossRefGoogle Scholar
  6. [6]
    Liu, M. M.; Sun, J. In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J. Mater. Chem. A 2014, 2, 12068–12074.CrossRefGoogle Scholar
  7. [7]
    Wang, X. K.; Li, Z. Q.; Zhang, Z. W.; Li, Q.; Guo, E. Y.; Wang, C. X.; Yin, L. W. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Nanoscale 2015, 7, 3604–3613.CrossRefGoogle Scholar
  8. [8]
    Cong, H.-P.; Xin, S.; Yu, S.-H. Flexible nitrogen-doped graphene/SnO2 foams promise kinetically stable lithium storage. Nano Energy 2015, 13, 482–490.CrossRefGoogle Scholar
  9. [9]
    Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.CrossRefGoogle Scholar
  10. [10]
    Zhao, Y.; Meng, Y. N.; Jiang, P. Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. J. Power Sources 2014, 259, 219–226.CrossRefGoogle Scholar
  11. [11]
    Zhang, P. G.; Zhang, C. Y.; Xie, A. J.; Li, C.; Song, J. M.; Shen, Y. H. Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J. Mater. Sci. 2016, 51, 3448–3453.CrossRefGoogle Scholar
  12. [12]
    Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435–441.CrossRefGoogle Scholar
  13. [13]
    Kim, W.-S.; Hwa, Y.; Kim, H.-C.; Choi, J.-H.; Sohn, H.-J.; Hong, S.-H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.CrossRefGoogle Scholar
  14. [14]
    Ge, D. H.; Geng, H. B.; Wang, J. Q.; Zheng, J. W.; Pan, Y.; Cao, X. Q.; Gu, H. W. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 2014, 6, 9689–9694.CrossRefGoogle Scholar
  15. [15]
    Yan, B.; Chen, L.; Liu, Y. J.; Zhu, G. X.; Wang, C. G.; Zhang, H.; Yang, G.; Ye, H. T.; Yuan, A. H. Co3O4 nanostructures with a high rate performance as anode materials for lithium-ion batteries, prepared via book-like cobalt-organic frameworks. CrystEngComm 2014, 16, 10227–10234.CrossRefGoogle Scholar
  16. [16]
    Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem.—Eur. J. 2009, 15, 6169–6174.CrossRefGoogle Scholar
  17. [17]
    Palacin, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.CrossRefGoogle Scholar
  18. [18]
    Chen, X.-C.; Wei, W.; Lv, W.; Su, F.-Y.; He, Y.-B.; Li, B. H.; Kang, F. Y.; Yang, Q.-H. A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem. Commun. 2012, 48, 5904–5906.Google Scholar
  19. [19]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.CrossRefGoogle Scholar
  20. [20]
    Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Onestep accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.CrossRefGoogle Scholar
  21. [21]
    Yu, Z.-L.; Xin, S.; You, Y.; Yu, L.; Lin, Y.; Xu, D.-W.; Qiao, C.; Huang, Z.-H.; Yang, N.; Yu, S.-H. et al. Ioncatalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 2016, 138, 14915–14922.CrossRefGoogle Scholar
  22. [22]
    Zhou, F.; Xin, S.; Liang, H.-W.; Song, L.-T.; Yu, S.-H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 11552–11556.CrossRefGoogle Scholar
  23. [23]
    Zhuo, L. H.; Wu, Y. Q.; Ming, J.; Wang, L. Y.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. Facile synthesis of a Co3O4- carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 1141–1147.CrossRefGoogle Scholar
  24. [24]
    Choi, B. G.; Chang, S.-J.; Lee, Y. B.; Bae, J. S.; Kim, H. J.; Huh, Y. S. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 2012, 4, 5924–5930.Google Scholar
  25. [25]
    Shan, T.-T.; Xin, S.; You, Y.; Cong, H.-P.; Yu, S.-H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film–foam–film structure for enhanced lithium storage. Angew. Chem. 2016, 128, 12975–12980.CrossRefGoogle Scholar
  26. [26]
    Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.CrossRefGoogle Scholar
  27. [27]
    Chen, L.-F.; Ma, S.-X.; Lu, S.; Feng, Y.; Zhang, J.; Xin, S.; Yu, S.-H. Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Res. 2017, 10, 1–11.CrossRefGoogle Scholar
  28. [28]
    Guo, L. G.; Ding, Y.; Qin, C. Q.; Li, W.; Du, J.; Fu, Z. B.; Song, W. L.; Wang, F. Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochim. Acta 2016, 187, 234–242.CrossRefGoogle Scholar
  29. [29]
    Li, P. H.; Cui, M. N.; Zhang, M. B.; Guo, A. M.; Sun, Y. F.; Wang, H.-G.; Li, Y. H.; Duan, Q. Facile fabrication of Co3O4/nitrogen-doped graphene hybrid materials as high performance anode materials for lithium ion batteries. CrystEngComm 2016, 18, 3383–3388.CrossRefGoogle Scholar
  30. [30]
    Li, C.; Chen, T. Q.; Xu, W. J.; Lou, X. B.; Pan, L. K.; Chen, Q.; Hu, B. W. Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5585–5591.CrossRefGoogle Scholar
  31. [31]
    Wang, Y.; Wang, B. F.; Xiao, F.; Huang, Z. G.; Wang, Y. J.; Richardson, C.; Chen, Z. X.; Jiao, L. F.; Yuan, H. T. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. J. Power Sources 2015, 298, 203–208.CrossRefGoogle Scholar
  32. [32]
    Zou, F.; Hu, X. L.; Li, Z.; Qie, L.; Hu, C. C.; Zeng, R.; Jiang, Y.; Huang, Y. H. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628.Google Scholar
  33. [33]
    Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.CrossRefGoogle Scholar
  34. [34]
    Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.CrossRefGoogle Scholar
  35. [35]
    Hu, L.; Yan, N.; Chen, Q. W.; Zhang, P.; Zhong, H.; Zheng, X. R.; Li, Y.; Hu, X. Y. Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem.—Eur. J. 2012, 18, 8971–8977.CrossRefGoogle Scholar
  36. [36]
    Wang, Z. Q.; Li, X.; Xu, H.; Yang, Y.; Cui, Y. J.; Pan, H. G.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery anodes. J. Mater. Chem. A 2014, 2, 12571–12575.CrossRefGoogle Scholar
  37. [37]
    Wu, R. B.; Qian, X. K.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. Z. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 2013, 1, 11126–11129.Google Scholar
  38. [38]
    Yin, D. M.; Huang, G.; Sun, Q. J.; Li, Q.; Wang, X. X.; Yuan, D. X.; Wang, C. L.; Wang, L. M. RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim. Acta 2016, 215, 410–419.CrossRefGoogle Scholar
  39. [39]
    Liu, W.; Yang, H. Z.; Zhao, L.; Liu, S.; Wang, H. L.; Chen, S. G. Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochim. Acta 2016, 207, 293–300.CrossRefGoogle Scholar
  40. [40]
    Su, P. P.; Liao, S. C.; Rong, F.; Wang, F. Q.; Chen, J.; Li, C.; Yang, Q. H. Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2014, 2, 17408–17414.CrossRefGoogle Scholar
  41. [41]
    Lu, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.CrossRefGoogle Scholar
  42. [42]
    Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.CrossRefGoogle Scholar
  43. [43]
    Wu, Z.-S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H.-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.CrossRefGoogle Scholar
  44. [44]
    Yan, C. S.; Chen, G.; Sun, J. X.; Lv, C. D.; Pei, J. Edge dislocation surface modification: A new and efficient strategy for realizing outstanding lithium storage performance. Nano Energy 2015, 15, 558–566.CrossRefGoogle Scholar
  45. [45]
    Zheng, F. C.; Xia, G. L.; Yang, Y.; Chen, Q. W. MOFderived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 9637–9645.Google Scholar
  46. [46]
    Su, Q. M.; Zhang, J.; Wu, Y. S.; Du, G. H. Revealing the electrochemical conversion mechanism of porous Co3O4 nanoplates in lithium ion battery by in situ transmission electron microscopy. Nano Energy 2014, 9, 264–272.CrossRefGoogle Scholar
  47. [47]
    Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y.-G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.Google Scholar
  48. [48]
    Wu, F. F.; Xiong, S. L.; Qian, Y. T.; Yu, S.-H. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8??nH2O: A new anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 10787–10791.CrossRefGoogle Scholar
  49. [49]
    Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058.CrossRefGoogle Scholar
  50. [50]
    Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.CrossRefGoogle Scholar
  51. [51]
    Li, B. J.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G. Co3O4@graphene composites as anode materials for highperformance lithium ion batteries. Inorg. Chem. 2011, 50, 1628–1632.CrossRefGoogle Scholar
  52. [52]
    Hao, F. B.; Zhang, Z. W.; Yin, L. W. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. ACS Appl. Mater. Interfaces 2013, 5, 8337–8344.CrossRefGoogle Scholar
  53. [53]
    Yang, X. L.; Fan, K. C.; Zhu, Y. H.; Shen, J. H.; Jiang, X.; Zhao, P.; Luan, S. R.; Li, C. Z. Electric papers of graphenecoated Co3O4 fibers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 997–1002.CrossRefGoogle Scholar
  54. [54]
    Zhang, M. M.; Li, R.; Chang, X. X.; Xue, C.; Gou, X. L. Hybrid of porous cobalt oxide nanospheres and nitrogendoped graphene for applications in lithium-ion batteries and oxygen reduction reaction. J. Power Sources 2015, 290, 25–34.CrossRefGoogle Scholar
  55. [55]
    Kitada, K.; Murayama, H.; Fukuda, K.; Arai, H.; Uchimoto, Y.; Ogumi, Z.; Matsubara, E. Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries. J. Power Sources 2016, 301, 11–17.CrossRefGoogle Scholar
  56. [56]
    Wang, S. H.; Chen, M. Q.; Xie, Y. Y.; Fan, Y.; Wang, D. W.; Jiang, J. J.; Li, Y. G.; Grützmacher, H.; Su, C. Y. Nanoparticle cookies derived from metal-organic frameworks: Controlled synthesis and application in anode materials for lithium-ion batteries. Small 2016, 12, 2365–2375.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Lab for Clean Energy & Green CatalysisAnhui UniversityHefeiChina

Personalised recommendations