Nano Research

, Volume 10, Issue 10, pp 3457–3467 | Cite as

Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries

Research Article
  • 168 Downloads

Abstract

A Co-based metal-organic framework (Co-MOF) with a unique three-dimensional starfish-like nanostructure was successfully synthesized using a simple ultrasonic method. After subsequent carbonization and oxidation, a nanocomposite of nitrogen-doped carbon with a Co3O4 coating (Co3O4@N-C) with a porous starfish-like nanostructure was obtained. The final hybrid exhibited excellent lithium storage performance when evaluated as an anode material in a lithiumion battery. A remarkable and stable discharge capacity of 795 mAh·g−1 was maintained at 0.5 A·g−1 after 300 cycles. Excellent rate capability was also obtained. In addition, a full Co3O4@N-C/LiFePO4 battery displayed stable capacity retention of 95% after 100 cycles. This excellent lithium storage performance is attributed to the unique porous starfish-like structure, which effectively buffers the volume expansion that occurs during Li+ insertion/deinsertion. Meanwhile, the nitrogendoped carbon coating enhances the electrical conductivity and provides a buffer layer to accommodate the volume change and accelerate the formation of a stable solid electrolyte interface layer.

Keywords

cobaltosic oxide starfish-like structure nitrogen-doped carbon metal-organic framework lithium-ion battery long cycle life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1557_MOESM1_ESM.pdf (489 kb)
Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries

References

  1. [1]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  2. [2]
    Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.CrossRefGoogle Scholar
  3. [3]
    Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.CrossRefGoogle Scholar
  4. [4]
    Zheng, F. C.; He, M. N.; Yang, Y.; Chen, Q. W. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as highperformance anodes for lithium-ion batteries. Nanoscale 2015, 7, 3410–3417.CrossRefGoogle Scholar
  5. [5]
    Zhao, Y.; Feng, Z. X.; Xu, Z. J. Yolk-shell Fe2O3 ? C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale 2015, 7, 9520–9525.CrossRefGoogle Scholar
  6. [6]
    Liu, M. M.; Sun, J. In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J. Mater. Chem. A 2014, 2, 12068–12074.CrossRefGoogle Scholar
  7. [7]
    Wang, X. K.; Li, Z. Q.; Zhang, Z. W.; Li, Q.; Guo, E. Y.; Wang, C. X.; Yin, L. W. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Nanoscale 2015, 7, 3604–3613.CrossRefGoogle Scholar
  8. [8]
    Cong, H.-P.; Xin, S.; Yu, S.-H. Flexible nitrogen-doped graphene/SnO2 foams promise kinetically stable lithium storage. Nano Energy 2015, 13, 482–490.CrossRefGoogle Scholar
  9. [9]
    Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.CrossRefGoogle Scholar
  10. [10]
    Zhao, Y.; Meng, Y. N.; Jiang, P. Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. J. Power Sources 2014, 259, 219–226.CrossRefGoogle Scholar
  11. [11]
    Zhang, P. G.; Zhang, C. Y.; Xie, A. J.; Li, C.; Song, J. M.; Shen, Y. H. Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J. Mater. Sci. 2016, 51, 3448–3453.CrossRefGoogle Scholar
  12. [12]
    Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435–441.CrossRefGoogle Scholar
  13. [13]
    Kim, W.-S.; Hwa, Y.; Kim, H.-C.; Choi, J.-H.; Sohn, H.-J.; Hong, S.-H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.CrossRefGoogle Scholar
  14. [14]
    Ge, D. H.; Geng, H. B.; Wang, J. Q.; Zheng, J. W.; Pan, Y.; Cao, X. Q.; Gu, H. W. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 2014, 6, 9689–9694.CrossRefGoogle Scholar
  15. [15]
    Yan, B.; Chen, L.; Liu, Y. J.; Zhu, G. X.; Wang, C. G.; Zhang, H.; Yang, G.; Ye, H. T.; Yuan, A. H. Co3O4 nanostructures with a high rate performance as anode materials for lithium-ion batteries, prepared via book-like cobalt-organic frameworks. CrystEngComm 2014, 16, 10227–10234.CrossRefGoogle Scholar
  16. [16]
    Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem.—Eur. J. 2009, 15, 6169–6174.CrossRefGoogle Scholar
  17. [17]
    Palacin, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.CrossRefGoogle Scholar
  18. [18]
    Chen, X.-C.; Wei, W.; Lv, W.; Su, F.-Y.; He, Y.-B.; Li, B. H.; Kang, F. Y.; Yang, Q.-H. A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem. Commun. 2012, 48, 5904–5906.Google Scholar
  19. [19]
    Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.CrossRefGoogle Scholar
  20. [20]
    Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Onestep accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.CrossRefGoogle Scholar
  21. [21]
    Yu, Z.-L.; Xin, S.; You, Y.; Yu, L.; Lin, Y.; Xu, D.-W.; Qiao, C.; Huang, Z.-H.; Yang, N.; Yu, S.-H. et al. Ioncatalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 2016, 138, 14915–14922.CrossRefGoogle Scholar
  22. [22]
    Zhou, F.; Xin, S.; Liang, H.-W.; Song, L.-T.; Yu, S.-H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 11552–11556.CrossRefGoogle Scholar
  23. [23]
    Zhuo, L. H.; Wu, Y. Q.; Ming, J.; Wang, L. Y.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. Facile synthesis of a Co3O4- carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 1141–1147.CrossRefGoogle Scholar
  24. [24]
    Choi, B. G.; Chang, S.-J.; Lee, Y. B.; Bae, J. S.; Kim, H. J.; Huh, Y. S. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 2012, 4, 5924–5930.Google Scholar
  25. [25]
    Shan, T.-T.; Xin, S.; You, Y.; Cong, H.-P.; Yu, S.-H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film–foam–film structure for enhanced lithium storage. Angew. Chem. 2016, 128, 12975–12980.CrossRefGoogle Scholar
  26. [26]
    Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.CrossRefGoogle Scholar
  27. [27]
    Chen, L.-F.; Ma, S.-X.; Lu, S.; Feng, Y.; Zhang, J.; Xin, S.; Yu, S.-H. Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Res. 2017, 10, 1–11.CrossRefGoogle Scholar
  28. [28]
    Guo, L. G.; Ding, Y.; Qin, C. Q.; Li, W.; Du, J.; Fu, Z. B.; Song, W. L.; Wang, F. Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochim. Acta 2016, 187, 234–242.CrossRefGoogle Scholar
  29. [29]
    Li, P. H.; Cui, M. N.; Zhang, M. B.; Guo, A. M.; Sun, Y. F.; Wang, H.-G.; Li, Y. H.; Duan, Q. Facile fabrication of Co3O4/nitrogen-doped graphene hybrid materials as high performance anode materials for lithium ion batteries. CrystEngComm 2016, 18, 3383–3388.CrossRefGoogle Scholar
  30. [30]
    Li, C.; Chen, T. Q.; Xu, W. J.; Lou, X. B.; Pan, L. K.; Chen, Q.; Hu, B. W. Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5585–5591.CrossRefGoogle Scholar
  31. [31]
    Wang, Y.; Wang, B. F.; Xiao, F.; Huang, Z. G.; Wang, Y. J.; Richardson, C.; Chen, Z. X.; Jiao, L. F.; Yuan, H. T. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. J. Power Sources 2015, 298, 203–208.CrossRefGoogle Scholar
  32. [32]
    Zou, F.; Hu, X. L.; Li, Z.; Qie, L.; Hu, C. C.; Zeng, R.; Jiang, Y.; Huang, Y. H. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628.Google Scholar
  33. [33]
    Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.CrossRefGoogle Scholar
  34. [34]
    Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.CrossRefGoogle Scholar
  35. [35]
    Hu, L.; Yan, N.; Chen, Q. W.; Zhang, P.; Zhong, H.; Zheng, X. R.; Li, Y.; Hu, X. Y. Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem.—Eur. J. 2012, 18, 8971–8977.CrossRefGoogle Scholar
  36. [36]
    Wang, Z. Q.; Li, X.; Xu, H.; Yang, Y.; Cui, Y. J.; Pan, H. G.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery anodes. J. Mater. Chem. A 2014, 2, 12571–12575.CrossRefGoogle Scholar
  37. [37]
    Wu, R. B.; Qian, X. K.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. Z. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 2013, 1, 11126–11129.Google Scholar
  38. [38]
    Yin, D. M.; Huang, G.; Sun, Q. J.; Li, Q.; Wang, X. X.; Yuan, D. X.; Wang, C. L.; Wang, L. M. RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim. Acta 2016, 215, 410–419.CrossRefGoogle Scholar
  39. [39]
    Liu, W.; Yang, H. Z.; Zhao, L.; Liu, S.; Wang, H. L.; Chen, S. G. Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochim. Acta 2016, 207, 293–300.CrossRefGoogle Scholar
  40. [40]
    Su, P. P.; Liao, S. C.; Rong, F.; Wang, F. Q.; Chen, J.; Li, C.; Yang, Q. H. Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2014, 2, 17408–17414.CrossRefGoogle Scholar
  41. [41]
    Lu, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.CrossRefGoogle Scholar
  42. [42]
    Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.CrossRefGoogle Scholar
  43. [43]
    Wu, Z.-S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H.-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.CrossRefGoogle Scholar
  44. [44]
    Yan, C. S.; Chen, G.; Sun, J. X.; Lv, C. D.; Pei, J. Edge dislocation surface modification: A new and efficient strategy for realizing outstanding lithium storage performance. Nano Energy 2015, 15, 558–566.CrossRefGoogle Scholar
  45. [45]
    Zheng, F. C.; Xia, G. L.; Yang, Y.; Chen, Q. W. MOFderived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 9637–9645.Google Scholar
  46. [46]
    Su, Q. M.; Zhang, J.; Wu, Y. S.; Du, G. H. Revealing the electrochemical conversion mechanism of porous Co3O4 nanoplates in lithium ion battery by in situ transmission electron microscopy. Nano Energy 2014, 9, 264–272.CrossRefGoogle Scholar
  47. [47]
    Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y.-G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.Google Scholar
  48. [48]
    Wu, F. F.; Xiong, S. L.; Qian, Y. T.; Yu, S.-H. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8??nH2O: A new anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 10787–10791.CrossRefGoogle Scholar
  49. [49]
    Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058.CrossRefGoogle Scholar
  50. [50]
    Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.CrossRefGoogle Scholar
  51. [51]
    Li, B. J.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G. Co3O4@graphene composites as anode materials for highperformance lithium ion batteries. Inorg. Chem. 2011, 50, 1628–1632.CrossRefGoogle Scholar
  52. [52]
    Hao, F. B.; Zhang, Z. W.; Yin, L. W. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. ACS Appl. Mater. Interfaces 2013, 5, 8337–8344.CrossRefGoogle Scholar
  53. [53]
    Yang, X. L.; Fan, K. C.; Zhu, Y. H.; Shen, J. H.; Jiang, X.; Zhao, P.; Luan, S. R.; Li, C. Z. Electric papers of graphenecoated Co3O4 fibers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 997–1002.CrossRefGoogle Scholar
  54. [54]
    Zhang, M. M.; Li, R.; Chang, X. X.; Xue, C.; Gou, X. L. Hybrid of porous cobalt oxide nanospheres and nitrogendoped graphene for applications in lithium-ion batteries and oxygen reduction reaction. J. Power Sources 2015, 290, 25–34.CrossRefGoogle Scholar
  55. [55]
    Kitada, K.; Murayama, H.; Fukuda, K.; Arai, H.; Uchimoto, Y.; Ogumi, Z.; Matsubara, E. Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries. J. Power Sources 2016, 301, 11–17.CrossRefGoogle Scholar
  56. [56]
    Wang, S. H.; Chen, M. Q.; Xie, Y. Y.; Fan, Y.; Wang, D. W.; Jiang, J. J.; Li, Y. G.; Grützmacher, H.; Su, C. Y. Nanoparticle cookies derived from metal-organic frameworks: Controlled synthesis and application in anode materials for lithium-ion batteries. Small 2016, 12, 2365–2375.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Lab for Clean Energy & Green CatalysisAnhui UniversityHefeiChina

Personalised recommendations