Nano Research

, Volume 10, Issue 10, pp 3447–3456 | Cite as

Plasmon enhancement for Vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities

  • Yueyue Wang
  • Feifei Qin
  • Junfeng Lu
  • Jitao Li
  • Zhu Zhu
  • Qiuxiang Zhu
  • Ye Zhu
  • Zengliang Shi
  • Chunxiang Xu
Research Article


It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side-mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.


ZnO/Pt microcavities whispering-gallery-mode single mode lasing Vernier effect surface plasmon coupling ZnO microrod 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors sincerely appreciate the help of Shufeng Wang and Yu Li at Peking University and Andong Xia at Institute of Chemistry Chinese Academy of Sciences for their technical support on time-resolved PL. This work was supported by the National Basic Research Program (No. 2013CB932903), National Natural Science Foundation (Nos. 61275054, 61475035, and 11404289), Jiangsu Province Science and Technology Support Program (No. BE2016177) and Natural Science Foundation of Zhejiang Province (No. LY17A040011).


  1. [1]
    Song, W. L.; Yang, W. L.; Chen, Q.; Hou, Q. Z.; Feng, M. Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity. Opt. Express 2015, 23, 13734–13751.CrossRefGoogle Scholar
  2. [2]
    Yang, S. C.; Wang, Y.; Sun, H. D. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162.CrossRefGoogle Scholar
  3. [3]
    Xu, C. X.; Dai, J.; Zhu, G. P.; Zhu, G. Y.; Lin, Y.; Li, J. T.; Shi, Z. L. Whispering-gallery mode lasing in ZnO microcavities. Laser Photonics Rev. 2014, 8, 469–494.CrossRefGoogle Scholar
  4. [4]
    Dai, J.; Xu, C. X.; Li, J. T.; Lin, Y.; Guo, J. Y.; Zhu, G. Y. Photoluminescence and two-photon lasing of ZnO:Sn microdisks. J. Phys. Chem. C 2014, 118, 14542–14547.CrossRefGoogle Scholar
  5. [5]
    Zhang, X. H.; Cheung, Y. F.; Zhang, Y. Y.; Choi, H. W. Whispering-gallery mode lasing from optically free-standing InGaN microdisks. Opt. Lett. 2014, 39, 5614–5617.CrossRefGoogle Scholar
  6. [6]
    Grivas, C.; Li, C. Y.; Andreakou, P.; Wang, P. F.; Ding, M.; Brambilla, G.; Manna, L.; Lagoudakis, P. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals. Nat. Commun. 2013, 4, 2376.CrossRefGoogle Scholar
  7. [7]
    Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.CrossRefGoogle Scholar
  8. [8]
    Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014, 14, 5995–6001.CrossRefGoogle Scholar
  9. [9]
    Rong, H. S.; Jones, R.; Liu, A. S.; Cohen, O.; Hak, D.; Fang, A.; Paniccia, M. A continuous-wave Raman silicon laser. Nature 2005, 433, 725–728.CrossRefGoogle Scholar
  10. [10]
    Lu, Y. J.; Wang, C. Y.; Kim, J.; Chen, H. Y.; Lu, M. Y.; Chen, Y. C.; Chang, W. H.; Chen, L. J.; Stockman, M. I.; Shih, C. K. et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett. 2014, 14, 4381–4388.CrossRefGoogle Scholar
  11. [11]
    Feng, L.; Wong, Z. J.; Ma, R. M.; Wang, Y.; Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 2014, 346, 972–975.CrossRefGoogle Scholar
  12. [12]
    Han, S. G.; Lim, J.; Shin, J.; Lee, S. M.; Park, T.; Yoon, J.; Woo, K.; Lee, H.; Lee, W. Optically pumped distributed feedback dye lasing with slide-coated TiO2 inverse-opal slab as Bragg reflector. Opt. Lett. 2014, 39, 4743–4746.CrossRefGoogle Scholar
  13. [13]
    Li, Z. Y.; Zhang, Z. Y.; Emery, T.; Scherer, A.; Psaltis, D. Single mode optofluidic distributed feedback dye laser. Opt. Express 2006, 14, 696–701.CrossRefGoogle Scholar
  14. [14]
    Li, Q. M.; Wright, J. B.; Chow, W. W.; Luk, T. S.; Brener, I.; Lester, L. F.; Wang, G. T. Single-mode GaN nanowire lasers. Opt. Express 2012, 20, 17873–17879.CrossRefGoogle Scholar
  15. [15]
    Ta, V. D.; Chen, R.; Sun, H. D. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv. Opt. Mater. 2014, 2, 220–225.CrossRefGoogle Scholar
  16. [16]
    Gao, H.; Fu, A.; Andrews, S. C.; Yang, P. Cleaved-coupled nanowire lasers. Proc. Natl. Acad. Sci. USA 2013, 110, 865–869.CrossRefGoogle Scholar
  17. [17]
    Grossmann, T.; Wienhold, T.; Bog, U.; Beck, T.; Friedmann, C.; Kalt, H.; Mappes, T. Polymeric photonic molecule super-mode lasers on silicon. Light: Sci. Appl. 2013, 2, e82.CrossRefGoogle Scholar
  18. [18]
    Xiao, Y.; Meng, C.; Wang, P.; Ye, Y.; Yu, H. K.; Wang, S. S.; Gu, F. X.; Dai, L.; Tong, L. M. Single-nanowire singlemode laser. Nano Lett. 2011, 11, 1122–1126.CrossRefGoogle Scholar
  19. [19]
    Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature lowthreshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953.CrossRefGoogle Scholar
  20. [20]
    Chou, Y. H.; Chou, B. T.; Chiang, C. K.; Lai, Y. Y.; Yang, C. T.; Li, H.; Lin, T. R.; Lin, C. C; Kuo, H. C.; Wang, S. C. et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers. ACS Nano 2015, 9, 3978–3983.CrossRefGoogle Scholar
  21. [21]
    Glaeske, M.; Setaro, A. Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from singlewalled carbon nanotubes. Nano Res. 2013, 6, 593–601.CrossRefGoogle Scholar
  22. [22]
    Kang, Z.; Yan, X. Q.; Wang, Y. F.; Zhao, Y. G.; Bai, Z. M.; Liu, Y. C.; Zhao, K.; Cao, S. Y.; Zhang, Y. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 2016, 9, 344–352.CrossRefGoogle Scholar
  23. [23]
    Chu, S.; Ren, J. J.; Yan, D.; Huang, J.; Liu, J. L. Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence. Appl. Phys. Lett. 2012, 101, 043122.CrossRefGoogle Scholar
  24. [24]
    Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction. Nanotechnology 2016, 27, 135701.CrossRefGoogle Scholar
  25. [25]
    Lu, J. F.; Li, J. T.; Xu, C. X.; Li, Y.; Dai, J.; Wang, Y. Y.; Lin, Y.; Wang, S. F. Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl. Mater. Interfaces 2014, 6, 18301–18305.CrossRefGoogle Scholar
  26. [26]
    Lin, Y.; Xu, C. X.; Li, J. T.; Zhu, G. Y.; Xu, X. Y.; Dai, J.; Wang, B. P. Localized surface plasmon resonance-enhanced two-photon excited ultraviolet emission of Au-decorated ZnO nanorod arrays. Adv. Opt. Mater. 2013, 1, 940–945.CrossRefGoogle Scholar
  27. [27]
    Lin, Y.; Li, J. T.; Xu, C. X.; Fan, X. M.; Wang, B. P. Localized surface plasmon resonance enhanced ultraviolet emission and F-P lasing from single ZnO microflower. Appl. Phys. Lett. 2014, 105, 142107.CrossRefGoogle Scholar
  28. [28]
    Li, W.; Wang, S. L.; Hu, M. Y.; He, S. F.; Ge, P. P.; Wang, J.; Guo, Y. Y.; Liu, Z. W. Enhancement of electroluminescence from embedded Si quantum dots/SiO2 multilayers film by localized-surface-plasmon and surface roughening. Sci. Rep. 2015, 5, 11881.CrossRefGoogle Scholar
  29. [29]
    Lin, J. M.; Lin, H. Y.; Cheng, C. L.; Chen, Y. F.Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 2006, 17, 4391–4394.CrossRefGoogle Scholar
  30. [30]
    Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833–838.CrossRefGoogle Scholar
  31. [31]
    Li, J. T.; Lin, Y.; Lu, J. F.; Xu, C. X.; Wang, Y. Y.; Shi, Z. L.; Dai, J. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance. ACS Nano 2015, 9, 6794–6800.CrossRefGoogle Scholar
  32. [32]
    Wang, Y. Y.; Xu, C. X.; Jiang, M. M.; Li, J. T.; Dai, J.; Lu, J. F.; Li, P. L. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale 2016, 8, 16631–16639.CrossRefGoogle Scholar
  33. [33]
    Xu, C. X.; Sun, X. W.; Dong, Z. L.; Yu, M. B. Selforganized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport. J. Cryst. Growth 2004, 270, 498–504.CrossRefGoogle Scholar
  34. [34]
    Xu, X. B.; Wu, M.; Asoro, M.; Ferreira, P. J.; Fan, D. L. One-step hydrothermal synthesis of comb-like ZnO nanostructures. Cryst. Growth Des. 2012, 12, 4829–4833.CrossRefGoogle Scholar
  35. [35]
    Zhang, N.; Tang, W.; Wang, P.; Zhang, X. T.; Zhao, Z. Y. In situ enhancement of NBE emission of Au–ZnO composite nanowires by SPR. CrystEngComm 2013, 15, 3301–3304.CrossRefGoogle Scholar
  36. [36]
    Wang, Y. Y.; Xu, C. X.; Li, J. T.; Dai, J.; Lin, Y.; Zhu, G. Y.; Lu, J. F.Improved whispering-gallery mode lasing of ZnO microtubes assisted by the localized surface plasmon resonance of Au nanoparticles. Sci. Adv. Mater. 2015, 7, 1156–1162.CrossRefGoogle Scholar
  37. [37]
    Surma S. A. Correlation of electron work function and surface-atomic structure of some d transition metals. Phys. Status Solidi A 2001, 183, 307–322.CrossRefGoogle Scholar
  38. [38]
    Ren, Q. H.; Zhang, Y.; Lu, H. L.; Chen, H. Y.; Zhang, Y.; Li, D. H.; Liu, W. J.; Ding, S. J.; Jiang A. Q.; Zhang, D. W. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layerdeposited Al2O3 spacer layer. Nanotechnology 2016, 27, 165705.CrossRefGoogle Scholar
  39. [39]
    Chen, S. S.; Pan, X. H.; He, H. P.; Chen, W.; Chen, C.; Dai, W.; Zhang, H. H.; Ding, P.; Huang, J. Y.; Lu, B. et al. Enhanced photoluminescence of nonpolar p-type ZnO film by surface plasmon resonance and electron transfer. Opt. Lett. 2015, 40, 649–652.CrossRefGoogle Scholar
  40. [40]
    Zhu, G. Y.; Xu, C. X.; Cai, L. S.; Li, J. T.; Shi, Z. L.; Lin, Y.; Chen, G. F.; Ding, T.; Tian, Z. S.; Dai, J. Lasing behavior modulation for ZnO whispering-gallery microcavities. ACS Appl. Mater. Interfaces 2012, 4, 6195–6201.CrossRefGoogle Scholar
  41. [41]
    Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.CrossRefGoogle Scholar
  42. [42]
    Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.CrossRefGoogle Scholar
  43. [43]
    Ding, M.; Zhao, D. X.; Yao, B.; E, S.; Guo, Z.; Zhang, L. G.; Shen, D. Z. The ultraviolet laser from individual ZnO microwire with quadrate cross section. Opt. Express 2012, 20, 13657–13662.CrossRefGoogle Scholar
  44. [44]
    Xu, H. W.; Wright, J. B.; Luk, T. S.; Figiel, J. J.; Cross, K.; Lester, L. F.; Balakrishnan, G.; Wang, G. T.; Brener, I.; Li, Q. M. Single-mode lasing of GaN nanowire-pairs. Appl. Phys. Lett. 2012, 101, 113106.CrossRefGoogle Scholar
  45. [45]
    Xu, E. M.; Zhang, X. L.; Zhou, L. N.; Zhang, Y.; Yu, Y.; Li, X.; Huang, D. X. Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops. Opt. Lett. 2010, 35, 1242–1244.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yueyue Wang
    • 1
    • 2
  • Feifei Qin
    • 1
  • Junfeng Lu
    • 1
  • Jitao Li
    • 1
  • Zhu Zhu
    • 1
  • Qiuxiang Zhu
    • 1
  • Ye Zhu
    • 1
  • Zengliang Shi
    • 1
  • Chunxiang Xu
    • 1
  1. 1.State Key Laboratory of Bioelectronics, School of Biological Science & Medical EngineeringSoutheast UniversityNanjingChina
  2. 2.School of SciencesZhejiang A&F UniversityLin’anChina

Personalised recommendations