Nano Research

, Volume 10, Issue 10, pp 3421–3433 | Cite as

Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles

  • Changhai Wang
  • Aleksandr A. Levin
  • Julie Karel
  • Simone Fabbrici
  • Jinfeng Qian
  • Carlos E. ViolBarbosa
  • Siham Ouardi
  • Franca Albertini
  • Walter Schnelle
  • Jan Rohlicek
  • Gerhard H. Fecher
  • Claudia Felser
Research Article


Phase transitions and magnetic properties of shape-memory materials can be tailored by tuning the size of the constituent materials, such as nanoparticles. However, owing to the lack of suitable synthetic methods for size-controlled Heusler nanoparticles, there is no report on the size dependence of their properties and functionalities. In this contribution, we present the first chemical synthesis of size-selected Co-Ni-Ga Heusler nanoparticles. We also report the structure and magnetic properties of the biphasic Co-Ni-Ga nanoparticles with sizes in the range of 30–84 nm, prepared by a SBA-15 nanoporous silicatemplated approach. The particle sizes could be readily tuned by controlling the loading and concentration of the precursors. The fractions and crystallite sizes of each phase of the Co-Ni-Ga nanoparticles are closely related to their particle size. Enhanced magnetization and decreased coercivity are observed with increasing particle size. The Curie temperature (Tc) of the Co-Ni-Ga nanoparticles also depends on their size. The 84 nm-sized particles exhibit the highest Tc (≈ 1,174 K) among all known Heusler compounds. The very high Curie temperatures of the Co-Ni-Ga nanoparticles render them promising candidates for application in high-temperature shape memory alloy-based devices.


Co-Ni-Ga nanoparticles chemical synthesis size magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1554_MOESM1_ESM.pdf (2.2 mb)
Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles


  1. [1]
    Saxena, A.; Aeppli, G. Phase transitions at the nanoscale in functional materials. MRS Bull. 2009, 34, 804–813.CrossRefGoogle Scholar
  2. [2]
    Waitz, T.; Tsuchiya, K.; Antretter, T.; Fischer, F. D. Phase transformations of nanocrystalline martensitic materials. MRS Bull. 2009, 34, 814–821.CrossRefGoogle Scholar
  3. [3]
    Juan, J. S.; Nó, M. L.; Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 2009, 4, 415–419.CrossRefGoogle Scholar
  4. [4]
    Zhang, J. X.; Ke, X. X.; Gou, G. Y.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.-I.; Minor, A. M.; Chu, Y.-H.; van Tendeloo, G. et al. A nanoscale shape memory oxide. Nat. Commun. 2013, 4, 2768.Google Scholar
  5. [5]
    Liu, Y.; Karaman, I.; Wang, H.; Zhang, X. Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. Adv. Mater. 2014, 26, 3893–3898.CrossRefGoogle Scholar
  6. [6]
    Waitz, T.; Antretter, T.; Fischer, F. D.; Simha, N. K.; Karnthaler, H. P. Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids 2007, 55, 419–444.CrossRefGoogle Scholar
  7. [7]
    Glezer, A. M.; Blinova, E. N.; Pozdnyakov, V. A.; Shelyakov, A. V. Martensite transformation in nanoparticles and nanomaterials. J. Nanopart. Res. 2003, 5, 551–560.CrossRefGoogle Scholar
  8. [8]
    Waitz, T.; Kazykhanov, V.; Karnthaler, H. P. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004, 52, 137–147.CrossRefGoogle Scholar
  9. [9]
    Waitz, T.; Spišák, D.; Hafner, J.; Karnthaler, H. P. Sizedependent martensitic transformation path causing atomicscale twinning of nanocrystalline NiTi shape memory alloys. EPL 2005, 71, 98–103.CrossRefGoogle Scholar
  10. [10]
    Waitz, T.; Pranger, W.; Antretter, T.; Fischer, F. D.; Karnthaler, H. P. Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys. Mater. Sci. Eng. A 2008, 481–482, 479–483.CrossRefGoogle Scholar
  11. [11]
    Zhao, X. Q.; Liang, Y.; Hu, Z. Q.; Liu, B. X. Thermodynamic interpretation of the martensitic transformation in ultrafine Fe(N) particles. Jpn. J. Appl. Phys. 1996, 35, 4468–4473.CrossRefGoogle Scholar
  12. [12]
    Wang, Y. D.; Ran, Y.; Nie, Z. H.; Liu, D. M.; Zou, L.; Choo, H.; Li, H.; Liaw, P. K.; Yan, J. Q.; McQueeney, R. J. et al. Structural transition of ferromagnetic Ni2MnGa nanoparticles. J. Appl. Phys. 2007, 101, 063530.CrossRefGoogle Scholar
  13. [13]
    Liu, D. M.; Nie, Z. H.; Wang, Y. D.; Liu, Y. D.; Wang, G.; Ren, Y.; Zuo, L. New sequences of phase transition in Ni-Mn-Ga ferromagnetic shape memory nanoparticles. Metall. Mater. Trans. A 2008, 39, 466–469.CrossRefGoogle Scholar
  14. [14]
    Seki, K.; Kura, H.; Sato, T.; Taniyama, T. Size dependence of martensite transformation temperature in ferromagnetic shape memory alloy FePd. J. Appl. Phys. 2008, 103, 063910.CrossRefGoogle Scholar
  15. [15]
    Simon, P.; Wolf, D.; Wang, C. H.; Levin, A. A.; Lubk, A.; Sturm, S.; Lichte, H.; Fecher, G. H.; Felser, C. Synthesis and three-dimensional magnetic field mapping of Co2FeGa Heusler nanowires at 5 nm resolution. Nano Lett. 2016, 16, 114–120.CrossRefGoogle Scholar
  16. [16]
    Imperor-Clerc, M.; Bazin, D.; Appay, M.-D.; Beaunier, P.; Davidson, A. Crystallization of ß-MnO2 nanowires in the pores of SBA-15 silica: In-situ investigation using synchrotron radiation. Chem. Mater. 2004, 16, 1813–1821.CrossRefGoogle Scholar
  17. [17]
    Aguey-Zinsou, K. F.; Yao, J. H.; Guo, Z. X. Reaction paths between LiNH2 and LiH with effects of nitrides. J. Phys. Chem. B 2007, 111, 12531–12536.CrossRefGoogle Scholar
  18. [18]
    Kockrick, E.; Krawiec, P.; Schnelle, W.; Geiger, D.; Schappacher, F. M.; Pöttgen, R.; Kaskel, S. Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15. Adv. Mater. 2007, 19, 3021–3026.CrossRefGoogle Scholar
  19. [19]
    He, M. Q.; Wong, C. H.; Tse, P. L.; Zheng, Y.; Zhang, H. J.; Lam, F. L. Y.; Sheng, P.; Hu, X. J.; Lortz, R. “Giant” enhancement of the upper critical field and fluctuations above the bulk Tc in superconducting ultrathin lead nanowire arrays. ACS Nano 2013, 7, 4187–4193.CrossRefGoogle Scholar
  20. [20]
    Dogan, E.; Karaman, I.; Chumlyakov, Y. I.; Luo, Z. P. Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater. 2011, 59, 1168–1183.CrossRefGoogle Scholar
  21. [21]
    Dadda, J.; Maier, H. J.; Niklasch, D.; Karaman, I.; Karaca, H. E.; Chumlyakov, Y. I. Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall. Mater. Trans. A 2008, 39, 2026–2039.CrossRefGoogle Scholar
  22. [22]
    Craciunescu, C.; Kishi, Y.; Lograsso, T. A.; Wuttig, M. Martensitic transformation in Co2NiGa ferromagnetic shape memory alloys. Scr. Mater. 2002, 47, 285–288.CrossRefGoogle Scholar
  23. [23]
    Fu, H.; Yu, H. J.; Teng, B. H.; Zhang, X. Y.; Zu, X. T. Magnetic properties and magnetic entropy change of Co50Ni22Ga28 alloy. J. Alloys Compd. 2009, 474, 595–597.CrossRefGoogle Scholar
  24. [24]
    Saito, T.; Koshimaru, Y.; Kuji, T. Structures and magnetic properties of Co–Ni–Ga melt-spun ribbons. J. Appl. Phys. 2008, 103, 07B322.CrossRefGoogle Scholar
  25. [25]
    Wang, C. H.; Levin, A. A.; Nasi, L.; Fabbrici, S.; Qian, J. F.; Barbosa, C. E. V.; Ouardi, S.; Karel, J.; Albertini, F.; Borrmann, H. et al. Chemical synthesis and characterization of ?-Co2NiGa nanoparticles with a very high curie temperature. Chem. Mater. 2015, 27, 6994–7002.CrossRefGoogle Scholar
  26. [26]
    Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.CrossRefGoogle Scholar
  27. [27]
    Levin, A. A.; Levichkova, M.; Hildebrandt, D.; Klisch, M.; Weiss, A.; Wynands, D.; Elschner, C.; Pfeiffer, M.; Leo, K.; Riede, M. Effect of film thickness, type of buffer layer, and substrate temperature on the morphology of dicyanovinylsubstituted sexithiophene films. Thin Solid Films 2012, 520, 2479–2487.CrossRefGoogle Scholar
  28. [28]
    Programm ANALYZE, Rayflex Version 2.285; Rich. Seifert & Co., 2000.Google Scholar
  29. [29]
    Langford J. I. Accuracy of crystallite size and strain determined from the integral breadth of powder diffraction lines. In Accuracy in Powder Diffraction; Block, S.; Hubbard, C. R., Eds.; National Bureau of Standards: Washington,1980; pp 255–269.Google Scholar
  30. [30]
    Rehani, B. R.; Joshi, P. B.; Lad, K. N.; Pratap, A. Crystallite size estimation of elemental and composite silver nano-powders using XRD principles. Indian J. Pure Appl. Phys. 2006, 44, 157–161.Google Scholar
  31. [31]
    Terlan, B.; Levin, A. A.; Börrnert, F.; Simon, F.; Oschatz, M.; Schmidt, M.; Cardoso-Gil, R.; Lorenz, T.; Baburin, I. A.; Joswig, J. O. et al. Effect of surface properties on the microstructure, thermal, and colloidal stability of VB2 nanoparticles. Chem. Mater. 2015, 27, 5106–5115.CrossRefGoogle Scholar
  32. [32]
    Akselrud, L.; Grin, Y. WinCSD: Software package for crystallographic calculations (version 4). J. Appl. Cryst. 2014, 47, 803–805.CrossRefGoogle Scholar
  33. [33]
    Bérar, J.-F.; Lelann, P. E.s.d.’s and estimated probable error obtained in rietveld refinements with local correlations. J. Appl. Cryst. 1991, 24, 1–5.CrossRefGoogle Scholar
  34. [34]
    Levin, A. A.; Filatov, S. K.; Paufler, P.; Bubnova, R. S.; Krzhizhanovskaya, M. G.; Meyer, D. C. Temperaturedependent evolution of RbBSi2O6 glass into crystalline RBboroleucite according to X-ray diffraction data. Z. Kristallogr. 2013, 228, 259–270.CrossRefGoogle Scholar
  35. [35]
    Young, R. A. Introduction to the Rietveld method. In The Rietveld Method; Oxford University Press: Oxford, 1993; pp 21–24.Google Scholar
  36. [36]
    Maunders, C.; Etheridge, J.; Wright, N.; Whitfield, H. J. Structure and microstructure of hexagonal Ba3Ti2RuO9 by electron diffraction and microscopy. Acta Cryst. 2005, B61, 154–159.CrossRefGoogle Scholar
  37. [37]
    Newville, M.; Ravel, B.; Haskel, D.; Rehr, J. J.; Stern, E. A.; Yacoby, Y. Analysis of multiple-scattering XAFS data using theoretical standards. Phys. B 1995, 208-209, 154–156.CrossRefGoogle Scholar
  38. [38]
    Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 2001, 8, 322–324.CrossRefGoogle Scholar
  39. [39]
    Zelenák, V.; Zelenáková, A.; Kovác, J. Insight into surface heterogenity of SBA-15 silica: Oxygen related defects and magnetic properties. Colloids Surf. A: Physicochem. Eng. Aspects 2010, 357, 97–104.CrossRefGoogle Scholar
  40. [40]
    Basit, L.; Wang, C. H.; Jenkins, C. A.; Balke, B.; Ksenofontov, V.; Fecher, G. H.; Felser, C.; Mgnaioli, E.; Kolb, U.; Nepijko, S. A. et al. Heusler compounds as ternary intermetallic nanoparticles: Co2FeGa. J. Phys. D Appl. Phys. 2009, 42, 084018.CrossRefGoogle Scholar
  41. [41]
    Wang, C. H.; Guo, Y. Z.; Casper, F.; Balke, B.; Fecher, G. H.; Fesler, C.; Hwu, Y. Size correlated long and short range order of ternary Co2FeGa Heusler nanoparticles. Appl. Phys. Lett. 2010, 97, 103106.CrossRefGoogle Scholar
  42. [42]
    Wang, C. H.; Basit, L.; Khalayka, Y.; Guo, Y. Z.; Casper, F.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Sö nnichsen, C. et al. Probing the size effect of Co2FeGa-SiO2@C nanocomposite particles prepared by a chemical approach. Chem. Mater. 2010, 22, 6575–6582.CrossRefGoogle Scholar
  43. [43]
    Wang, C. H.; Casper, F.; Guo, Y. Z.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Felser, C.; Hwu, Y. K.; Lee, J. J. Resolving the phase structure of nonstoichiometric Co2FeGa Heusler nanoparticles. J. Appl. Phys. 2012, 112, 124314.CrossRefGoogle Scholar
  44. [44]
    Wang, C. H.; Casper, F.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Felser, C.; Hwu, Y. K.; Lee, J. J. Structural and magnetic properties of Fe2CoGa Heusler nanoparticles. J. Phys. D Appl. Phys. 2012, 45, 295001.CrossRefGoogle Scholar
  45. [45]
    Wang, C. H.; Meyer, J.; Teichert, N.; Auge, A.; Rausch, E.; Balke, B.; Hütten A.; Fecher, G. H.; Felser, C. Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J. Vac. Sci. Technol. B 2014, 32, 020802.CrossRefGoogle Scholar
  46. [46]
    Lubt, A.; Wolf, D.; Simon, P.; Wang, C.; Sturm, S.; Felser, C. Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires. Appl. Phys. Lett. 2014, 105, 173110.CrossRefGoogle Scholar
  47. [47]
    Fichtner, T.; Wang, C. H.; Levin, A. A.; Kreiner, G.; Meijia, C. S.; Fabbrici, S.; Albertini, F.; Felser, C. Effects of annealing on the martensitic transformation of Ni-based ferromagnetic shape memory Heusler alloys and nanoparticles. Metals 2015, 5, 484–503.CrossRefGoogle Scholar
  48. [48]
    Wang, C. H.; Levin, A. A.; Fabbrici, S.; Nasi, L.; Karel, J.; Qian, J. F.; Viol Barbosa, C. E.; Ouardi, S.; Albertini, F.; Schnelle, W. et al. Tunable structural and magnetic properties of chemically synthesized dual-phase Co2NiGa nanoparticles. J. Mater. Chem. C. 2016, 4, 7241–7252.CrossRefGoogle Scholar
  49. [49]
    Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  50. [50]
    Sato, M.; Okazaki, T.; Furuya, Y.; Wuttig, M. Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater. Trans. 2003, 44, 372–376.CrossRefGoogle Scholar
  51. [51]
    Sato, M.; Okazaki, T.; Furuya, Y.; Kishi, Y.; Wuttig, M. Phase transformation and magnetic property of Heusler type Co2NiGa alloys. Mater. Trans. 2004, 45, 204–207.CrossRefGoogle Scholar
  52. [52]
    Brown, P. J.; Ishida, K.; Kainuma, R.; Kanomata, T.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K. R. A. Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co-Ni-Al and Co-Ni-Ga. J. Phys. Condens. Matter 2005, 17, 1301–1310.CrossRefGoogle Scholar
  53. [53]
    Dai, X. F.; Wang, H. Y.; Liu, G. D.; Wang, Y. G.; Duan, X. F.; Chen, J. L.; Wu, G. H. Effect of heat treatment on the properties of Co50Ni20Ga30 ferromagnetic shape memory alloy ribbons. J. Phys. D Appl. Phys. 2006, 39, 2886–2889.CrossRefGoogle Scholar
  54. [54]
    Oikawa, K.; Ota, T.; Imano, Y.; Omori, T.; Kainuma, R.; Ishida, K. Phase equilibria and phase transformation of Co-Ni-Ga ferromagnetic shape memory alloy system. J. Phase Equilib. Diff. 2006, 27, 75–82.CrossRefGoogle Scholar
  55. [55]
    Dai, X. F.; Liu, G. D.; Li, Y. X.; Qu, J. P.; Li, J.; Chen, J. L.; Wu, G. H. Structure and magnetic properties of highly ordered Co2NiGa alloys. J. Appl. Phys. 2007, 101, 09N503.Google Scholar
  56. [56]
    Arróyave, R.; Junkaew, A.; Chivukula, A.; Bajaj, S.; Yao, C.-Y.; Garay, A. Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Mater. 2010, 58, 5220–5231.CrossRefGoogle Scholar
  57. [57]
    Meyer, D. C.; Levin, A. A.; Leisegang, T.; Gutmann, E.; Paufler, P.; Reibold, M.; Pompe, W. Reversible tuning of a series of intergrowth phases of the Ruddlesden–Popper type SrO(SrTiO3)n in an (001) SrTiO3 single-crystalline plate by an external electric field and its potential use for adaptive X-ray optics. Appl. Phys. A 2006, 84, 31–35.CrossRefGoogle Scholar
  58. [58]
    Meyer, D. C.; Paufler, P. Coherency and lattice spacings of textured permalloy/copper multilayers as revealed by X-ray diffraction. J. Alloys Compd. 2000, 298, 42–46.CrossRefGoogle Scholar
  59. [59]
    Segmüller, A.; Blakeslee, A. E. X-ray diffraction from one-dimensional superlattices in GaAs1–xPx crystals. J. Appl. Cryst. 1973, 6, 19–25.CrossRefGoogle Scholar
  60. [60]
    Michaelsen, C. On the structure and homogeneity of solid solutions: The limits of conventional X-ray diffraction. Philos. Mag. A 1995, 72, 813–828.CrossRefGoogle Scholar
  61. [61]
    Ayyub, P.; Palkar, V. R.; Chattopadhyay, S.; Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 1995, 51, 6135–6138.CrossRefGoogle Scholar
  62. [62]
    Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 1989, 72, 1555–1558.CrossRefGoogle Scholar
  63. [63]
    Teranishi, T.; Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 1998, 10, 594–600.CrossRefGoogle Scholar
  64. [64]
    Takahashi, Y. K.; Koyama, T.; Ohnuma, M.; Ohkubo, T.; Hono, K. Size dependence of ordering in FePt nanoparticles. J. Appl. Phys. 2004, 95, 2690–2696.CrossRefGoogle Scholar
  65. [65]
    Qi, W. H.; Wang, M. P. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanopart. Res. 2005, 7, 51–57.CrossRefGoogle Scholar
  66. [66]
    Baletto, F.; Ferrando, R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 2005, 77, 371–423.CrossRefGoogle Scholar
  67. [67]
    Rong, C. B.; Li, D.; Nandwana, V.; Poudyal, N.; Ding, Y.; Wang, Z. L.; Zeng, H.; Liu, J. P. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv. Mater. 2006, 18, 2984–2988.CrossRefGoogle Scholar
  68. [68]
    Wu, S. J.; Jiang, Y.; Hu, L. J.; Sun, J. G.; Wan, P. P.; Sun, L. D. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation. Nanoscale 2016, 8, 12282–12288.CrossRefGoogle Scholar
  69. [69]
    Jun, Y.-W.; Seo, J.-W.; Cheon, J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 2008, 41, 179–189.CrossRefGoogle Scholar
  70. [70]
    Willard, M. A.; Kurihara, L. K.; Carpenter, E. E.; Calvin, S.; Harris, V. G. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 2004, 49, 125–170.CrossRefGoogle Scholar
  71. [71]
    He, X. M.; Zhong, W.; Au, C.-T.; Du, Y. W. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale Res. Lett. 2013, 8, 446.CrossRefGoogle Scholar
  72. [72]
    Shih, T. C.; Xie, J. Q.; Dong, J. W.; Dong, X. Y.; Srivastava, S.; Adelmann, C.; Makernan, S.; James, R. D.; PalmstrØm, C. J. Epitaxial growth and characterization of single crystal ferromagnetic shape memory Co2NiGa films. Ferroelectrics 2006, 342, 35–42.CrossRefGoogle Scholar
  73. [73]
    Hernando, A.; Navarro, I.; Prados, C.; García, D.; Vá zquez, M.; Alsonso, J. Curie-temperature enhancement of ferromagnetic phases in nanoscale heterogeneous systems. Phys. Rev. B 1996, 53, 8223–8226.CrossRefGoogle Scholar
  74. [74]
    Lopez-Dominguez, V.; Hernà ndez, J. M.; Tejada, J.; Ziolo, R. F. Colossal reduction in curie temperature due to finitesize effects in CoFe2O4 nanoparticles. Chem. Mater. 2013, 25, 6–11.CrossRefGoogle Scholar
  75. [75]
    Taylor, A.; Floyd, R. W. Precision measurements of lattice parameters of non-cubic crystals. Acta Cryst. 1950, 3, 285–289.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Changhai Wang
    • 1
  • Aleksandr A. Levin
    • 1
  • Julie Karel
    • 1
  • Simone Fabbrici
    • 2
    • 3
  • Jinfeng Qian
    • 1
  • Carlos E. ViolBarbosa
    • 1
  • Siham Ouardi
    • 1
  • Franca Albertini
    • 2
  • Walter Schnelle
    • 1
  • Jan Rohlicek
    • 1
  • Gerhard H. Fecher
    • 1
  • Claudia Felser
    • 1
  1. 1.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  2. 2.Institute of Materials for Electronics and MagnetismIMEM-CNRParmaItaly
  3. 3.MIST E-R LaboratoryBolognaItaly

Personalised recommendations