Nano Research

, Volume 10, Issue 10, pp 3421–3433 | Cite as

Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles

  • Changhai Wang
  • Aleksandr A. Levin
  • Julie Karel
  • Simone Fabbrici
  • Jinfeng Qian
  • Carlos E. ViolBarbosa
  • Siham Ouardi
  • Franca Albertini
  • Walter Schnelle
  • Jan Rohlicek
  • Gerhard H. Fecher
  • Claudia Felser
Research Article


Phase transitions and magnetic properties of shape-memory materials can be tailored by tuning the size of the constituent materials, such as nanoparticles. However, owing to the lack of suitable synthetic methods for size-controlled Heusler nanoparticles, there is no report on the size dependence of their properties and functionalities. In this contribution, we present the first chemical synthesis of size-selected Co-Ni-Ga Heusler nanoparticles. We also report the structure and magnetic properties of the biphasic Co-Ni-Ga nanoparticles with sizes in the range of 30–84 nm, prepared by a SBA-15 nanoporous silicatemplated approach. The particle sizes could be readily tuned by controlling the loading and concentration of the precursors. The fractions and crystallite sizes of each phase of the Co-Ni-Ga nanoparticles are closely related to their particle size. Enhanced magnetization and decreased coercivity are observed with increasing particle size. The Curie temperature (T c) of the Co-Ni-Ga nanoparticles also depends on their size. The 84 nm-sized particles exhibit the highest T c (≈ 1,174 K) among all known Heusler compounds. The very high Curie temperatures of the Co-Ni-Ga nanoparticles render them promising candidates for application in high-temperature shape memory alloy-based devices.


Co-Ni-Ga nanoparticles chemical synthesis size magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge financial supports by the German Research Foundation (DFG) under the Project of TP 2.3-A in research unit FOR 1464 “ASPIMATT” and the ERC Advanced Grant (291472 Idea Heusler). The authors are also grateful to Prof. A. Hütten (Department of Physics, Bielefeld University) for stimulating discussions; Dr. R. Ramlau and Ms. U. Köhler (MPICPfS) for TEM support; Dr. G. Auffermann (MPI-CPfS) for the chemical analysis; Dr. H. Borrmann (MPICPfS) for support of the HTXRD measurements; Prof. S. Kaskel (Department of Inorganic Chemistry, Technical University of Dresden) for the nitrogen adsorption measurements; Mr. R. Koban for kind help with sample preparation and magnetic measurements; Dr. L. Olivi (Elettra Sincrotrone Trieste) for stimulating discussion and kind help with the XANES experiments. The XANES measurements were performed at the Elettra Sincrotrone Trieste (Trieste, Italy) under the approval of proposal No. 20140471 and at the “National Synchrotron Radiation Research Center” (NSRRC, Hsinchu, Taiwan, China) under the approval of proposal No. 2013-2-027-4.

Supplementary material

12274_2017_1554_MOESM1_ESM.pdf (2.2 mb)
Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles


  1. [1]
    Saxena, A.; Aeppli, G. Phase transitions at the nanoscale in functional materials. MRS Bull. 2009, 34, 804–813.CrossRefGoogle Scholar
  2. [2]
    Waitz, T.; Tsuchiya, K.; Antretter, T.; Fischer, F. D. Phase transformations of nanocrystalline martensitic materials. MRS Bull. 2009, 34, 814–821.CrossRefGoogle Scholar
  3. [3]
    Juan, J. S.; Nó, M. L.; Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 2009, 4, 415–419.CrossRefGoogle Scholar
  4. [4]
    Zhang, J. X.; Ke, X. X.; Gou, G. Y.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.-I.; Minor, A. M.; Chu, Y.-H.; van Tendeloo, G. et al. A nanoscale shape memory oxide. Nat. Commun. 2013, 4, 2768.Google Scholar
  5. [5]
    Liu, Y.; Karaman, I.; Wang, H.; Zhang, X. Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. Adv. Mater. 2014, 26, 3893–3898.CrossRefGoogle Scholar
  6. [6]
    Waitz, T.; Antretter, T.; Fischer, F. D.; Simha, N. K.; Karnthaler, H. P. Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids 2007, 55, 419–444.CrossRefGoogle Scholar
  7. [7]
    Glezer, A. M.; Blinova, E. N.; Pozdnyakov, V. A.; Shelyakov, A. V. Martensite transformation in nanoparticles and nanomaterials. J. Nanopart. Res. 2003, 5, 551–560.CrossRefGoogle Scholar
  8. [8]
    Waitz, T.; Kazykhanov, V.; Karnthaler, H. P. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004, 52, 137–147.CrossRefGoogle Scholar
  9. [9]
    Waitz, T.; Spišák, D.; Hafner, J.; Karnthaler, H. P. Sizedependent martensitic transformation path causing atomicscale twinning of nanocrystalline NiTi shape memory alloys. EPL 2005, 71, 98–103.CrossRefGoogle Scholar
  10. [10]
    Waitz, T.; Pranger, W.; Antretter, T.; Fischer, F. D.; Karnthaler, H. P. Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys. Mater. Sci. Eng. A 2008, 481–482, 479–483.CrossRefGoogle Scholar
  11. [11]
    Zhao, X. Q.; Liang, Y.; Hu, Z. Q.; Liu, B. X. Thermodynamic interpretation of the martensitic transformation in ultrafine Fe(N) particles. Jpn. J. Appl. Phys. 1996, 35, 4468–4473.CrossRefGoogle Scholar
  12. [12]
    Wang, Y. D.; Ran, Y.; Nie, Z. H.; Liu, D. M.; Zou, L.; Choo, H.; Li, H.; Liaw, P. K.; Yan, J. Q.; McQueeney, R. J. et al. Structural transition of ferromagnetic Ni2MnGa nanoparticles. J. Appl. Phys. 2007, 101, 063530.CrossRefGoogle Scholar
  13. [13]
    Liu, D. M.; Nie, Z. H.; Wang, Y. D.; Liu, Y. D.; Wang, G.; Ren, Y.; Zuo, L. New sequences of phase transition in Ni-Mn-Ga ferromagnetic shape memory nanoparticles. Metall. Mater. Trans. A 2008, 39, 466–469.CrossRefGoogle Scholar
  14. [14]
    Seki, K.; Kura, H.; Sato, T.; Taniyama, T. Size dependence of martensite transformation temperature in ferromagnetic shape memory alloy FePd. J. Appl. Phys. 2008, 103, 063910.CrossRefGoogle Scholar
  15. [15]
    Simon, P.; Wolf, D.; Wang, C. H.; Levin, A. A.; Lubk, A.; Sturm, S.; Lichte, H.; Fecher, G. H.; Felser, C. Synthesis and three-dimensional magnetic field mapping of Co2FeGa Heusler nanowires at 5 nm resolution. Nano Lett. 2016, 16, 114–120.CrossRefGoogle Scholar
  16. [16]
    Imperor-Clerc, M.; Bazin, D.; Appay, M.-D.; Beaunier, P.; Davidson, A. Crystallization of ß-MnO2 nanowires in the pores of SBA-15 silica: In-situ investigation using synchrotron radiation. Chem. Mater. 2004, 16, 1813–1821.CrossRefGoogle Scholar
  17. [17]
    Aguey-Zinsou, K. F.; Yao, J. H.; Guo, Z. X. Reaction paths between LiNH2 and LiH with effects of nitrides. J. Phys. Chem. B 2007, 111, 12531–12536.CrossRefGoogle Scholar
  18. [18]
    Kockrick, E.; Krawiec, P.; Schnelle, W.; Geiger, D.; Schappacher, F. M.; Pöttgen, R.; Kaskel, S. Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15. Adv. Mater. 2007, 19, 3021–3026.CrossRefGoogle Scholar
  19. [19]
    He, M. Q.; Wong, C. H.; Tse, P. L.; Zheng, Y.; Zhang, H. J.; Lam, F. L. Y.; Sheng, P.; Hu, X. J.; Lortz, R. “Giant” enhancement of the upper critical field and fluctuations above the bulk Tc in superconducting ultrathin lead nanowire arrays. ACS Nano 2013, 7, 4187–4193.CrossRefGoogle Scholar
  20. [20]
    Dogan, E.; Karaman, I.; Chumlyakov, Y. I.; Luo, Z. P. Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater. 2011, 59, 1168–1183.CrossRefGoogle Scholar
  21. [21]
    Dadda, J.; Maier, H. J.; Niklasch, D.; Karaman, I.; Karaca, H. E.; Chumlyakov, Y. I. Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall. Mater. Trans. A 2008, 39, 2026–2039.CrossRefGoogle Scholar
  22. [22]
    Craciunescu, C.; Kishi, Y.; Lograsso, T. A.; Wuttig, M. Martensitic transformation in Co2NiGa ferromagnetic shape memory alloys. Scr. Mater. 2002, 47, 285–288.CrossRefGoogle Scholar
  23. [23]
    Fu, H.; Yu, H. J.; Teng, B. H.; Zhang, X. Y.; Zu, X. T. Magnetic properties and magnetic entropy change of Co50Ni22Ga28 alloy. J. Alloys Compd. 2009, 474, 595–597.CrossRefGoogle Scholar
  24. [24]
    Saito, T.; Koshimaru, Y.; Kuji, T. Structures and magnetic properties of Co–Ni–Ga melt-spun ribbons. J. Appl. Phys. 2008, 103, 07B322.CrossRefGoogle Scholar
  25. [25]
    Wang, C. H.; Levin, A. A.; Nasi, L.; Fabbrici, S.; Qian, J. F.; Barbosa, C. E. V.; Ouardi, S.; Karel, J.; Albertini, F.; Borrmann, H. et al. Chemical synthesis and characterization of ?-Co2NiGa nanoparticles with a very high curie temperature. Chem. Mater. 2015, 27, 6994–7002.CrossRefGoogle Scholar
  26. [26]
    Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.CrossRefGoogle Scholar
  27. [27]
    Levin, A. A.; Levichkova, M.; Hildebrandt, D.; Klisch, M.; Weiss, A.; Wynands, D.; Elschner, C.; Pfeiffer, M.; Leo, K.; Riede, M. Effect of film thickness, type of buffer layer, and substrate temperature on the morphology of dicyanovinylsubstituted sexithiophene films. Thin Solid Films 2012, 520, 2479–2487.CrossRefGoogle Scholar
  28. [28]
    Programm ANALYZE, Rayflex Version 2.285; Rich. Seifert & Co., 2000.Google Scholar
  29. [29]
    Langford J. I. Accuracy of crystallite size and strain determined from the integral breadth of powder diffraction lines. In Accuracy in Powder Diffraction; Block, S.; Hubbard, C. R., Eds.; National Bureau of Standards: Washington,1980; pp 255–269.Google Scholar
  30. [30]
    Rehani, B. R.; Joshi, P. B.; Lad, K. N.; Pratap, A. Crystallite size estimation of elemental and composite silver nano-powders using XRD principles. Indian J. Pure Appl. Phys. 2006, 44, 157–161.Google Scholar
  31. [31]
    Terlan, B.; Levin, A. A.; Börrnert, F.; Simon, F.; Oschatz, M.; Schmidt, M.; Cardoso-Gil, R.; Lorenz, T.; Baburin, I. A.; Joswig, J. O. et al. Effect of surface properties on the microstructure, thermal, and colloidal stability of VB2 nanoparticles. Chem. Mater. 2015, 27, 5106–5115.CrossRefGoogle Scholar
  32. [32]
    Akselrud, L.; Grin, Y. WinCSD: Software package for crystallographic calculations (version 4). J. Appl. Cryst. 2014, 47, 803–805.CrossRefGoogle Scholar
  33. [33]
    Bérar, J.-F.; Lelann, P. E.s.d.’s and estimated probable error obtained in rietveld refinements with local correlations. J. Appl. Cryst. 1991, 24, 1–5.CrossRefGoogle Scholar
  34. [34]
    Levin, A. A.; Filatov, S. K.; Paufler, P.; Bubnova, R. S.; Krzhizhanovskaya, M. G.; Meyer, D. C. Temperaturedependent evolution of RbBSi2O6 glass into crystalline RBboroleucite according to X-ray diffraction data. Z. Kristallogr. 2013, 228, 259–270.CrossRefGoogle Scholar
  35. [35]
    Young, R. A. Introduction to the Rietveld method. In The Rietveld Method; Oxford University Press: Oxford, 1993; pp 21–24.Google Scholar
  36. [36]
    Maunders, C.; Etheridge, J.; Wright, N.; Whitfield, H. J. Structure and microstructure of hexagonal Ba3Ti2RuO9 by electron diffraction and microscopy. Acta Cryst. 2005, B61, 154–159.CrossRefGoogle Scholar
  37. [37]
    Newville, M.; Ravel, B.; Haskel, D.; Rehr, J. J.; Stern, E. A.; Yacoby, Y. Analysis of multiple-scattering XAFS data using theoretical standards. Phys. B 1995, 208-209, 154–156.CrossRefGoogle Scholar
  38. [38]
    Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 2001, 8, 322–324.CrossRefGoogle Scholar
  39. [39]
    Zelenák, V.; Zelenáková, A.; Kovác, J. Insight into surface heterogenity of SBA-15 silica: Oxygen related defects and magnetic properties. Colloids Surf. A: Physicochem. Eng. Aspects 2010, 357, 97–104.CrossRefGoogle Scholar
  40. [40]
    Basit, L.; Wang, C. H.; Jenkins, C. A.; Balke, B.; Ksenofontov, V.; Fecher, G. H.; Felser, C.; Mgnaioli, E.; Kolb, U.; Nepijko, S. A. et al. Heusler compounds as ternary intermetallic nanoparticles: Co2FeGa. J. Phys. D Appl. Phys. 2009, 42, 084018.CrossRefGoogle Scholar
  41. [41]
    Wang, C. H.; Guo, Y. Z.; Casper, F.; Balke, B.; Fecher, G. H.; Fesler, C.; Hwu, Y. Size correlated long and short range order of ternary Co2FeGa Heusler nanoparticles. Appl. Phys. Lett. 2010, 97, 103106.CrossRefGoogle Scholar
  42. [42]
    Wang, C. H.; Basit, L.; Khalayka, Y.; Guo, Y. Z.; Casper, F.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Sö nnichsen, C. et al. Probing the size effect of Co2FeGa-SiO2@C nanocomposite particles prepared by a chemical approach. Chem. Mater. 2010, 22, 6575–6582.CrossRefGoogle Scholar
  43. [43]
    Wang, C. H.; Casper, F.; Guo, Y. Z.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Felser, C.; Hwu, Y. K.; Lee, J. J. Resolving the phase structure of nonstoichiometric Co2FeGa Heusler nanoparticles. J. Appl. Phys. 2012, 112, 124314.CrossRefGoogle Scholar
  44. [44]
    Wang, C. H.; Casper, F.; Gasi, T.; Ksenofontov, V.; Balke, B.; Fecher, G. H.; Felser, C.; Hwu, Y. K.; Lee, J. J. Structural and magnetic properties of Fe2CoGa Heusler nanoparticles. J. Phys. D Appl. Phys. 2012, 45, 295001.CrossRefGoogle Scholar
  45. [45]
    Wang, C. H.; Meyer, J.; Teichert, N.; Auge, A.; Rausch, E.; Balke, B.; Hütten A.; Fecher, G. H.; Felser, C. Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J. Vac. Sci. Technol. B 2014, 32, 020802.CrossRefGoogle Scholar
  46. [46]
    Lubt, A.; Wolf, D.; Simon, P.; Wang, C.; Sturm, S.; Felser, C. Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires. Appl. Phys. Lett. 2014, 105, 173110.CrossRefGoogle Scholar
  47. [47]
    Fichtner, T.; Wang, C. H.; Levin, A. A.; Kreiner, G.; Meijia, C. S.; Fabbrici, S.; Albertini, F.; Felser, C. Effects of annealing on the martensitic transformation of Ni-based ferromagnetic shape memory Heusler alloys and nanoparticles. Metals 2015, 5, 484–503.CrossRefGoogle Scholar
  48. [48]
    Wang, C. H.; Levin, A. A.; Fabbrici, S.; Nasi, L.; Karel, J.; Qian, J. F.; Viol Barbosa, C. E.; Ouardi, S.; Albertini, F.; Schnelle, W. et al. Tunable structural and magnetic properties of chemically synthesized dual-phase Co2NiGa nanoparticles. J. Mater. Chem. C. 2016, 4, 7241–7252.CrossRefGoogle Scholar
  49. [49]
    Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  50. [50]
    Sato, M.; Okazaki, T.; Furuya, Y.; Wuttig, M. Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater. Trans. 2003, 44, 372–376.CrossRefGoogle Scholar
  51. [51]
    Sato, M.; Okazaki, T.; Furuya, Y.; Kishi, Y.; Wuttig, M. Phase transformation and magnetic property of Heusler type Co2NiGa alloys. Mater. Trans. 2004, 45, 204–207.CrossRefGoogle Scholar
  52. [52]
    Brown, P. J.; Ishida, K.; Kainuma, R.; Kanomata, T.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K. R. A. Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co-Ni-Al and Co-Ni-Ga. J. Phys. Condens. Matter 2005, 17, 1301–1310.CrossRefGoogle Scholar
  53. [53]
    Dai, X. F.; Wang, H. Y.; Liu, G. D.; Wang, Y. G.; Duan, X. F.; Chen, J. L.; Wu, G. H. Effect of heat treatment on the properties of Co50Ni20Ga30 ferromagnetic shape memory alloy ribbons. J. Phys. D Appl. Phys. 2006, 39, 2886–2889.CrossRefGoogle Scholar
  54. [54]
    Oikawa, K.; Ota, T.; Imano, Y.; Omori, T.; Kainuma, R.; Ishida, K. Phase equilibria and phase transformation of Co-Ni-Ga ferromagnetic shape memory alloy system. J. Phase Equilib. Diff. 2006, 27, 75–82.CrossRefGoogle Scholar
  55. [55]
    Dai, X. F.; Liu, G. D.; Li, Y. X.; Qu, J. P.; Li, J.; Chen, J. L.; Wu, G. H. Structure and magnetic properties of highly ordered Co2NiGa alloys. J. Appl. Phys. 2007, 101, 09N503.Google Scholar
  56. [56]
    Arróyave, R.; Junkaew, A.; Chivukula, A.; Bajaj, S.; Yao, C.-Y.; Garay, A. Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Mater. 2010, 58, 5220–5231.CrossRefGoogle Scholar
  57. [57]
    Meyer, D. C.; Levin, A. A.; Leisegang, T.; Gutmann, E.; Paufler, P.; Reibold, M.; Pompe, W. Reversible tuning of a series of intergrowth phases of the Ruddlesden–Popper type SrO(SrTiO3)n in an (001) SrTiO3 single-crystalline plate by an external electric field and its potential use for adaptive X-ray optics. Appl. Phys. A 2006, 84, 31–35.CrossRefGoogle Scholar
  58. [58]
    Meyer, D. C.; Paufler, P. Coherency and lattice spacings of textured permalloy/copper multilayers as revealed by X-ray diffraction. J. Alloys Compd. 2000, 298, 42–46.CrossRefGoogle Scholar
  59. [59]
    Segmüller, A.; Blakeslee, A. E. X-ray diffraction from one-dimensional superlattices in GaAs1–xPx crystals. J. Appl. Cryst. 1973, 6, 19–25.CrossRefGoogle Scholar
  60. [60]
    Michaelsen, C. On the structure and homogeneity of solid solutions: The limits of conventional X-ray diffraction. Philos. Mag. A 1995, 72, 813–828.CrossRefGoogle Scholar
  61. [61]
    Ayyub, P.; Palkar, V. R.; Chattopadhyay, S.; Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 1995, 51, 6135–6138.CrossRefGoogle Scholar
  62. [62]
    Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 1989, 72, 1555–1558.CrossRefGoogle Scholar
  63. [63]
    Teranishi, T.; Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 1998, 10, 594–600.CrossRefGoogle Scholar
  64. [64]
    Takahashi, Y. K.; Koyama, T.; Ohnuma, M.; Ohkubo, T.; Hono, K. Size dependence of ordering in FePt nanoparticles. J. Appl. Phys. 2004, 95, 2690–2696.CrossRefGoogle Scholar
  65. [65]
    Qi, W. H.; Wang, M. P. Size and shape dependent lattice parameters of metallic nanoparticles. J. Nanopart. Res. 2005, 7, 51–57.CrossRefGoogle Scholar
  66. [66]
    Baletto, F.; Ferrando, R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 2005, 77, 371–423.CrossRefGoogle Scholar
  67. [67]
    Rong, C. B.; Li, D.; Nandwana, V.; Poudyal, N.; Ding, Y.; Wang, Z. L.; Zeng, H.; Liu, J. P. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv. Mater. 2006, 18, 2984–2988.CrossRefGoogle Scholar
  68. [68]
    Wu, S. J.; Jiang, Y.; Hu, L. J.; Sun, J. G.; Wan, P. P.; Sun, L. D. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation. Nanoscale 2016, 8, 12282–12288.CrossRefGoogle Scholar
  69. [69]
    Jun, Y.-W.; Seo, J.-W.; Cheon, J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 2008, 41, 179–189.CrossRefGoogle Scholar
  70. [70]
    Willard, M. A.; Kurihara, L. K.; Carpenter, E. E.; Calvin, S.; Harris, V. G. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 2004, 49, 125–170.CrossRefGoogle Scholar
  71. [71]
    He, X. M.; Zhong, W.; Au, C.-T.; Du, Y. W. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale Res. Lett. 2013, 8, 446.CrossRefGoogle Scholar
  72. [72]
    Shih, T. C.; Xie, J. Q.; Dong, J. W.; Dong, X. Y.; Srivastava, S.; Adelmann, C.; Makernan, S.; James, R. D.; PalmstrØm, C. J. Epitaxial growth and characterization of single crystal ferromagnetic shape memory Co2NiGa films. Ferroelectrics 2006, 342, 35–42.CrossRefGoogle Scholar
  73. [73]
    Hernando, A.; Navarro, I.; Prados, C.; García, D.; Vá zquez, M.; Alsonso, J. Curie-temperature enhancement of ferromagnetic phases in nanoscale heterogeneous systems. Phys. Rev. B 1996, 53, 8223–8226.CrossRefGoogle Scholar
  74. [74]
    Lopez-Dominguez, V.; Hernà ndez, J. M.; Tejada, J.; Ziolo, R. F. Colossal reduction in curie temperature due to finitesize effects in CoFe2O4 nanoparticles. Chem. Mater. 2013, 25, 6–11.CrossRefGoogle Scholar
  75. [75]
    Taylor, A.; Floyd, R. W. Precision measurements of lattice parameters of non-cubic crystals. Acta Cryst. 1950, 3, 285–289.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Changhai Wang
    • 1
  • Aleksandr A. Levin
    • 1
  • Julie Karel
    • 1
  • Simone Fabbrici
    • 2
    • 3
  • Jinfeng Qian
    • 1
  • Carlos E. ViolBarbosa
    • 1
  • Siham Ouardi
    • 1
  • Franca Albertini
    • 2
  • Walter Schnelle
    • 1
  • Jan Rohlicek
    • 1
  • Gerhard H. Fecher
    • 1
  • Claudia Felser
    • 1
  1. 1.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  2. 2.Institute of Materials for Electronics and MagnetismIMEM-CNRParmaItaly
  3. 3.MIST E-R LaboratoryBolognaItaly

Personalised recommendations