Nano Research

, Volume 10, Issue 10, pp 3407–3420 | Cite as

TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm

Research Article


In this article, we introduce Tsinghua Global Minimum (TGMin) as a new program for the global minimum searching of geometric structures of gas-phase or surface-supported atomic clusters, and the constrained basin-hopping (BH) algorithm implemented in this program. To improve the efficiency of the BH algorithm, several types of constraints are introduced to reduce the vast search space, including constraints on the random displacement step size, displacement of low-coordination atoms, and geometrical structure adjustment after displacement. The ultrafast shape-recognition (USR) algorithm and its variants are implemented to identify duplicate structures during the global minimum search. In addition to the Metropolis acceptance criterion, we also implemented a morphology-based constraint that confines the global minimum search to a specific type of morphology, such as planar or non-planar structures, which offers a strict divide-and-conquer strategy for the BH algorithm. These improvements are implemented in the TGMin program, which was developed over the past decade and has been used in a number of publications. We tested our TGMin program on global minimum structural searches for a number of metal and main-group clusters including C60, Au20 and B20 clusters. Over the past five years, the TGMin program has been used to determine the global minimum structures of a series of boron atomic clusters (such as [B26], [B28], [B30], [B35], [B36], [B39], [B40], [MnB16], [CoB18], [RhB18], and [TaB20]), metal-containing clusters Li n (n = 3–20), Au9(CO)8 + and [Cr6O19]2–, and the oxide-supported metal catalyst Au7/γ-Al2O3, as well as other isolated and surface-supported atomic clusters. In this article we present the major features of TGMin program and show that it is highly efficient at searching for global-minimum structures of atomic clusters in the gas phase and on various surface supports.


basin hopping ultrafast shape recognition global minimum search density functional theory cluster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The TGMin program was initially developed at Tsinghua University (China) as a part of the Ph.D. Dissertation (2012) of Y. F. Z. under the supervision of J. L. Y. F. Z. is financially supported by the National Key Research and Development Program of China (No. 2016YFB0201203) and National High-tech R&D Program of China (No. 2015AA01A304). X. C. and J. L. are supported by the National Basic Research Program of China (No. 2013CB834603) and the National Natural Science Foundation of China (Nos. 21433005, 91426302, 21521091, and 21590792).


  1. [1]
    Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.CrossRefGoogle Scholar
  2. [2]
    Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.CrossRefGoogle Scholar
  3. [3]
    Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO 2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.CrossRefGoogle Scholar
  4. [4]
    Kirkpatric, S.; Gelatt, C. D., Jr.; Vecchi, M. P. Optimization by simulated annealing. Science 1983, 220, 671–680.CrossRefGoogle Scholar
  5. [5]
    Wales, D. J.; Doye, J. P. K. Global optimization by basinhopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 1997, 101, 5111–5116.CrossRefGoogle Scholar
  6. [6]
    White, R. P.; Mayne, H. R. An investigation of two approaches to basin hopping minimization for atomic and molecular clusters. Chem. Phys. Lett. 1998, 289, 463–468.CrossRefGoogle Scholar
  7. [7]
    Liberti, L.; Maculan, N. Global Optimization; Springer: New York, 2006.CrossRefGoogle Scholar
  8. [8]
    Deaven, D. M.; Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 1995, 75, 288–291.CrossRefGoogle Scholar
  9. [9]
    Daven, D. M.; Tit, N.; Morris, J. R.; Ho, K. M. Structural optimization of Lennard–Jones clusters by a genetic algorithm. Chem. Phys. Lett. 1996, 256, 195–200.CrossRefGoogle Scholar
  10. [10]
    Johnston, R. L.; Mortimer-Jones, T. V.; Roberts, C.; Darby, S.; Manby, F. R. Application of genetic algorithms in nanoscience: Cluster geometry optimization. In Lecture Notes in Computer Science; Cagnoni, S.; Gottlieb, J.; Hart, E.; Middendorf, M.; Raidl, G. R., Eds.; Springer: Berlin Heidelberg, 2002; pp 92–101.Google Scholar
  11. [11]
    Johnston, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Trans. 2003, 4193–4207.Google Scholar
  12. [12]
    Alexandrova, A. N.; Boldyrev, A. I. Search for the Lin 0/+1/–1 (n = 5–7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J. Chem. Theory Comput. 2005, 1, 566–580.CrossRefGoogle Scholar
  13. [13]
    Alexandrova, A. N. H·(H2O)n clusters: Microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA). J. Phys. Chem. A 2010, 114, 12591–12599.CrossRefGoogle Scholar
  14. [14]
    Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX: Evolutionary crystal structure prediction. Comput. Phys. Commun. 2006, 175, 713–720.CrossRefGoogle Scholar
  15. [15]
    Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172–1182.CrossRefGoogle Scholar
  16. [16]
    Bera, P. P.; Schleyer, P. V. R.; Schaefer, H. F., III. Periodane: A wealth of structural possibilities revealed by the kick procedure. Int. J. Quantum Chem. 2007, 107, 2220–2223.Google Scholar
  17. [17]
    Zhai, H. C.; Ha, M.-A.; Alexandrova, A. N. Affck: Adaptive force-field-assisted ab initio coalescence kick method for global minimum search. J. Chem. Theory Comput. 2015, 11, 2385–2393.CrossRefGoogle Scholar
  18. [18]
    Addicoat, M. A.; Metha, G. F. Kick: Constraining a stochastic search procedure with molecular fragments. J. Comput. Chem. 2009, 30, 57–64.CrossRefGoogle Scholar
  19. [19]
    Bera, P. P.; Sattelmeyer, K. W.; Saunders, M.; Schaefer, H. F., III; Schleyer, P. V. R. Mindless chemistry. J. Phys. Chem. A 2006, 110, 4287–4290.CrossRefGoogle Scholar
  20. [20]
    Call, S. T.; Zubarev, D. Y.; Boldyrev, A. I. Global minimum structure searches via particle swarm optimization. J. Comput. Chem. 2007, 28, 1177–1186.CrossRefGoogle Scholar
  21. [21]
    Wang, Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. Calypso: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070.CrossRefGoogle Scholar
  22. [22]
    Shang, C.; Liu, Z.-P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 2013, 9, 1838–1845.CrossRefGoogle Scholar
  23. [23]
    Shang, C.; Zhang, X.-J.; Liu, Z.-P. Stochastic surface walking method for crystal structure and phase transition pathway prediction. Phys. Chem. Chem. Phys. 2014, 16, 17845–17856.CrossRefGoogle Scholar
  24. [24]
    Jiang, D.-E.; Luo, W. D.; Tiago, M. L.; Dai, S. In search of a structural model for a thiolate-protected Au38 cluster. J. Phys. Chem. C. 2008, 112, 13905–13910.CrossRefGoogle Scholar
  25. [25]
    Jiang, D.-E.; Walter, M. Au 40: A large tetrahedral magic cluster. Phys. Rev. B 2011, 84, 193402.CrossRefGoogle Scholar
  26. [26]
    Jiang, M. L.; Zeng, Q.; Zhang, T. T.; Yang, M. L.; Jackson, K. A. Icosahedral to double-icosahedral shape transition of copper clusters. J. Chem. Phys. 2012, 136, 104501.CrossRefGoogle Scholar
  27. [27]
    Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. A concentric planar doubly π-aromatic B19 cluster. Nat. Chem. 2010, 2, 202–206.CrossRefGoogle Scholar
  28. [28]
    Yoo, S.; Zeng, X. C.; Zhu, X. L.; Bai, J. Possible lowest-energy geometry of silicon clusters Si21 and Si25. J. Am. Chem. Soc. 2003, 125, 13318–13319.CrossRefGoogle Scholar
  29. [29]
    Yoo, S.; Zhao, J. J.; Wang, J. L.; Zeng, X. C. Endohedral silicon fullerenes Sin (27 ≤ n ≤ 39). J. Am. Chem. Soc. 2004, 126, 13845–13849.CrossRefGoogle Scholar
  30. [30]
    Bai, J.; Cui, L.-F.; Wang, J. L.; Yoo, S.; Li, X.; Jellinek, J.; Koehler, C.; Frauenheim, T.; Wang, L.-S.; Zeng, X. C. Structural evolution of anionic silicon clusters Sin (20 ≤ n ≤ 45). J. Phys. Chem. A 2006, 110, 908–912.CrossRefGoogle Scholar
  31. [31]
    Bulusu, S.; Zeng, X. C. Structures and relative stability of neutral gold clusters: Aun (n = 15–19). J. Chem. Phys. 2006, 125, 154303.CrossRefGoogle Scholar
  32. [32]
    Choi, T. H.; Liang, R. B.; Maupin, C. M.; Voth, G. A. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. J. Phys. Chem. B 2013, 117, 5165–5179.CrossRefGoogle Scholar
  33. [33]
    Choi, T. H. Simulation of the (H2O)8 cluster with the SCCDFTB electronic structure method. Chem. Phys. Lett. 2012, 543, 45–49.CrossRefGoogle Scholar
  34. [34]
    Zhan, L. X.; Chen, J. Z. Y.; Liu, W.-K.; Lai, S. K. Asynchronous multicanonical basin hopping method and its application to cobalt nanoclusters. J. Chem. Phys. 2005, 122, 244707.CrossRefGoogle Scholar
  35. [35]
    Paz-Borbón, L. O.; Mortimer-Jones, T. V.; Johnston, R. L.; Posada-Amarillas, A.; Barcaro, G.; Fortunelli, A. Structures and energetics of 98 atom Pd-Pt nanoalloys: Potential stability of the leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 2007, 9, 5202–5208.CrossRefGoogle Scholar
  36. [36]
    Doye, J. P. K.; Wales, D. J. Thermodynamics of global optimization. Phys. Rev. Lett. 1998, 80, 1357–1360.CrossRefGoogle Scholar
  37. [37]
    Kiran, B.; Bulusu, S.; Zhai, H.-J.; Yoo, S.; Zeng, X. C.; Wang, L.-S. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. USA 2005, 102, 961–964.CrossRefGoogle Scholar
  38. [38]
    Leary, R. H. Global optimization on funneling landscapes. J. Global Optim. 2000, 18, 367–383.CrossRefGoogle Scholar
  39. [39]
    Kim, H. G.; Choi, S. K.; Lee, H. M. New algorithm in the basin hopping Monte Carlo to find the global minimum structure of unary and binary metallic nanoclusters. J. Chem. Phys. 2008, 128, 144702.CrossRefGoogle Scholar
  40. [40]
    Zhan, L. X.; Piwowar, B.; Liu, W.-K.; Hsu, P. J.; Lai, S. K.; Chen, J. Z. Y. Multicanonical basin hopping: A new global optimization method for complex systems. J. Chem. Phys. 2004, 120, 5536–5542.CrossRefGoogle Scholar
  41. [41]
    Iwamatsu, M.; Okabe, Y. Basin hopping with occasional jumping. Chem. Phys. Lett. 2004, 399, 396–400.CrossRefGoogle Scholar
  42. [42]
    Cheng, L. J.; Cai, W. S.; Shao, X. G. A connectivity table for cluster similarity checking in the evolutionary optimization method. Chem. Phys. Lett. 2004, 389, 309–314.CrossRefGoogle Scholar
  43. [43]
    Zhao, Y.-F.; Li, J. The computer software of Tsinghua Global Minima (TGMin) program, version 1.0. Intellectual Property Bureau of China, register no. 2013sr007920, Nov 15, 2012.Google Scholar
  44. [44]
    Luo, X.-M.; Jian, T.; Cheng, L.-J.; Li, W.-L.; Chen, Q.; Li, R.; Zhai, H.-J.; Li, S.-D.; Boldyrev, A. I.; Li, J. et al. B26–: The smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem. Phys. Lett., in press, DOI: 10.1016/j.cplett.2016.12.051.Google Scholar
  45. [45]
    Wang, Y.-J.; Zhao, Y.-F.; Li, W.-L.; Jian, T.; Chen, Q.; You, X.-R.; Ou, T.; Zhao, X.-Y.; Zhai, H.-J.; Li, S.-D. et al. Observation and characterization of the smallest borospherene, B28 and B28. J. Chem. Phys. 2016, 144, 064307.CrossRefGoogle Scholar
  46. [46]
    Li, W.-L.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Wang, L.-S. [B30]: A quasiplanar chiral boron cluster. Angew. Chem., Int. Ed. 2014, 53, 5540–5545.CrossRefGoogle Scholar
  47. [47]
    Li, W.-L.; Chen, Q.; Tian, W.-J.; Bai, H.; Zhao, Y.-F.; Hu, H.-S.; Li, J.; Zhai, H.-J.; Li, S.-D.; Wang, L.-S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257–12260.CrossRefGoogle Scholar
  48. [48]
    Piazza, Z. A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.CrossRefGoogle Scholar
  49. [49]
    Chen, Q.; Li, W.-L.; Zhao, Y.-F.; Zhang, S.-Y.; Hu, H.-S.; Bai, H.; Li, H.-R.; Tian, W.-J.; Lu, H.-G.; Zhai, H.-J. et al. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 2015, 9, 754–760.CrossRefGoogle Scholar
  50. [50]
    Zhai, H.-J.; Zhao, Y.-F.; Li, W.-L.; Chen, Q.; Bai, H.; Hu, H.-S.; Piazza, Z. A.; Tian, W.-J.; Lu, H.-G.; Wu, Y.-B. et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731.Google Scholar
  51. [51]
    Jian, T.; Li, W.-L.; Popov, I. A.; Lopez, G. V.; Chen, X.; Boldyrev, A. I.; Li, J.; Wang, L.-S. Manganese-centered tubular boron cluster—MnB16 : A new class of transitionmetal molecules. J. Chem. Phys. 2016, 144, 154310.CrossRefGoogle Scholar
  52. [52]
    Li, W.-L.; Jian, T.; Chen, X.; Chen, T.-T.; Lopez, G. V.; Li, J.; Wang, L.-S. The planar CoB18 cluster as a motif for metallo-borophenes. Angew. Chem., Int. Ed. 2016, 55, 7358–7363.CrossRefGoogle Scholar
  53. [53]
    Jian, T.; Li, W.-L.; Chen, X.; Chen, T.-T.; Lopez, G. V.; Li, J.; Wang, L.-S. Competition between drum and quasi-planar structures in RbB18 : Motifs for metallo-boronanotubes and metallo-borophenes. Chem. Sci. 2016, 7, 7020–7027.CrossRefGoogle Scholar
  54. [54]
    Li, W.-L.; Jian, T.; Chen, X.; Li, H.-R.; Chen, T.-T.; Luo, X.-M.; Li, S.-D.; Li, J.; Wang, L.-S. Observation of a metal-centered B2-Ta@B18 tubular molecular rotor and a perfect Ta@B20 boron drum with the record coordination number of twenty. Chem. Commun. 2017, 53, 1587–1590.Google Scholar
  55. [55]
    Hu, H.-S.; Zhao, Y.-F.; Hammond, J. R.; Bylaska, E. J.; Aprà, E.; van Dam, H. J. J.; Li, J.; Govind, N.; Kowalski, K. Theoretical studies of the global minima and polarizabilities of small lithium clusters. Chem. Phys. Lett. 2016, 644, 235–242.CrossRefGoogle Scholar
  56. [56]
    Jiang, N.; Schwarz, W. H. E.; Li, J. Theoretical studies on hexanuclear oxometalates [M6L19]q– (M = Cr, Mo, W, Sg, Nd, U). Electronic structures, oxidation states, aromaticity, and stability. Inorg. Chem. 2015, 54, 7171–7180.Google Scholar
  57. [57]
    Liu, J.-C.; Tang, Y.; Chang, C.-R.; Wang, Y.-G.; Li, J. Mechanistic insights into propene epoxidation with O2-H2O mixture on Au7/α-Al2O3: A hydroproxyl pathway from ab initio molecular dynamics simulations. ACS Catal. 2016, 6, 2525–2535.CrossRefGoogle Scholar
  58. [58]
    Yang, X. F.; Wang, Y. L.; Zhao, Y. F.; Wang, A. Q.; Zhang, T.; Li, J. Adsorption-induced structural changes of gold cations from two- to three-dimensions. Phys. Chem. Chem. Phys. 2010, 12, 3038–3043.CrossRefGoogle Scholar
  59. [59]
    Wang, L.-S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.CrossRefGoogle Scholar
  60. [60]
    Chen, X.; Zhao, Y.-F.; Wang, L.-S.; Li, J. Recent progresses of global minimum searches of nanoclusters with a constrained basin-hopping algorithm in the TGMin program. Comput. Theor. Chem. 2017, 1107, 57–65.CrossRefGoogle Scholar
  61. [61]
    Bahn, S. R.; Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 2002, 4, 56–66.CrossRefGoogle Scholar
  62. [62]
    Ballester, P. J.; Richards, W. G. Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem. 2007, 28, 1711–1723.CrossRefGoogle Scholar
  63. [63]
    Ballester, P. J.; Richards, W. G. Ultrafast shape recognition for similarity search in molecular databases. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 2007, 463, 1307–1321.CrossRefGoogle Scholar
  64. [64]
    Ballester, P. J.; Finn, P. W.; Richards, W. G. Ultrafast shape recognition: Evaluating a new ligand-based virtual screening technology. J. Mol. Graph. Model. 2009, 27, 836–845.CrossRefGoogle Scholar
  65. [65]
    Takeuchi, H. Clever and efficient method for searching optimal geometries of lennard-jones clusters. J. Chem. Inf. Model. 2006, 46, 2066–2070.CrossRefGoogle Scholar
  66. [66]
    Kim, H. Y.; Kim, H. G.; Kim, D. H.; Lee, H. M. Overstabilization of the metastable structure of isolated Ag-Pd bimetallic clusters. J. Phys. Chem. C 2008, 112, 17138–17142.CrossRefGoogle Scholar
  67. [67]
    Zhao, Y.-F. Theoretical Studies on the Catalytic Mechanisms of Methanol Synthesis. Ph.D. Thesis, Tsinghua University, 2012.Google Scholar
  68. [68]
    Pyykkö, P.; Riedel, S.; Patzschke, M. Triple-bond covalent radii. Chem.—Eur. J. 2005, 11, 3511–3520.CrossRefGoogle Scholar
  69. [69]
    Pyykkö, P.; Atsumi, M. Molecular double-bond covalent radii for elements Li-E112. Chem.—Eur. J. 2009, 15, 12770–12779.CrossRefGoogle Scholar
  70. [70]
    Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem.—Eur. J. 2009, 15, 186–197.CrossRefGoogle Scholar
  71. [71]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  72. [72]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  73. [73]
    Nguyen, Q. C.; Ong, Y. S.; Soh, H.; Kuo, J.-L. Multiscale approach to explore the potential energy surface of water clusters (H2O)n n ≤ 8. J. Phys. Chem. A 2008, 112, 6257–6261.CrossRefGoogle Scholar
  74. [74]
    Zhai, H. J.; Kiran, B.; Dai, B.; Li, J.; Wang, L. S. Unique CO chemisorption properties of gold hexamer: Au6(CO)n (n = 0–3). J. Am. Chem. Soc 2005, 127, 12098–12106.CrossRefGoogle Scholar
  75. [75]
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian09, revision A. 1.; Gaussian, Inc.: Wallingford, CT, USA, 2009.Google Scholar
  76. [76]
    te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with adf. J. Comput. Chem. 2001, 22, 931–967.CrossRefGoogle Scholar
  77. [77]
    VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.CrossRefGoogle Scholar
  78. [78]
    Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L. et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477–1489.CrossRefGoogle Scholar
  79. [79]
    JASMIN; CAEP Software Center for High Performance Numertical Simulation: Beijing, 2010. http://www.caepscns. (accesssed Feb 20, 2017).Google Scholar
  80. [80]
    Mo, Z. Y.; Zhang, A. Q.; Cao, X. L.; Liu, Q. K.; Xu, X. W.; An, H. B.; Pei, W. B.; Zhu, S. P. JASMIN: A parallel software infrastructure for scientific computing. Front. Comput. Sci. China 2010, 4, 480–488.CrossRefGoogle Scholar
  81. [81]
    Fang, J.; Gao, X. Y.; Song, H. F.; Wang, H. On the existence of the optimal order for wavefunction extrapolation in Born–Oppenheimer molecular dynamics. J. Chem. Phys. 2016, 144, 244103.CrossRefGoogle Scholar
  82. [82]
    Gao, X. Y.; Mo, Z. Y.; Fang, J.; Song, H. F.; Wang, H. Parallel 3-Dim fast Fourier transforms with load balancing of the plane waves. Comput. Phys. Commun. 2017, 211, 54–60.CrossRefGoogle Scholar
  83. [83]
    Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.CrossRefGoogle Scholar
  84. [84]
    Bai, H.; Chen, Q.; Zhao, Y.-F.; Wu, Y.-B.; Lu, H.-G.; Li, J.; Li, S.-D. B30H8, B39H9 2–, B42H10, B48H10, and B72H12: Polycyclic aromatic snub hydroboron clusters analogous to polycyclic aromatic hydrocarbons. J. Mol. Model. 2013, 19, 1195–1204.CrossRefGoogle Scholar
  85. [85]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  86. [86]
    Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.CrossRefGoogle Scholar
  87. [87]
    Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.CrossRefGoogle Scholar
  88. [88]
    Vandevondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.CrossRefGoogle Scholar
  89. [89]
    Pulay, P. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 1980, 73, 393–398.CrossRefGoogle Scholar
  90. [90]
    Xu, C.-Q.; Lee, M.-S.; Wang, Y.-G.; Cantu, D. C.; Li, J.; Glezakou, V. A.; Rousseau, R. Structural rearrangement of Au-Pd nanoparticles under reaction conditions: An ab initio molecular dynamics study. ACS Nano 2017, 11, 1649–1658.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingChina
  2. 2.CAEP Software Center for High Performance Numerical SimulationBeijingChina
  3. 3.Department of Chemistry and Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of EducationTsinghua UniversityBeijingChina

Personalised recommendations