Nano Research

, Volume 10, Issue 10, pp 3396–3406 | Cite as

Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4

Research Article

Abstract

Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion.

Keywords

photocatalysis cocatalyst palladium hydride carbon dioxide methane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1552_MOESM1_ESM.pdf (4.3 mb)
Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4

References

  1. [1]
    Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.CrossRefGoogle Scholar
  2. [2]
    Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.CrossRefGoogle Scholar
  3. [3]
    Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.CrossRefGoogle Scholar
  4. [4]
    White, J. L.; Baruch, M. F.; Pander, J. E., III; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.CrossRefGoogle Scholar
  5. [5]
    Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.CrossRefGoogle Scholar
  6. [6]
    Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.CrossRefGoogle Scholar
  7. [7]
    Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.CrossRefGoogle Scholar
  8. [8]
    Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 2010, 132, 14385–14387.CrossRefGoogle Scholar
  9. [9]
    Li, P.; Zhou, Y.; Zhao, Z. Y.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Hexahedron prism-anchored octahedronal CeO2: Crystal facet-based homojunction promoting efficient solar fuel synthesis. J. Am. Chem. Soc. 2015, 137, 9547–9550.CrossRefGoogle Scholar
  10. [10]
    Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.CrossRefGoogle Scholar
  11. [11]
    Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.CrossRefGoogle Scholar
  12. [12]
    Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.CrossRefGoogle Scholar
  13. [13]
    Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.CrossRefGoogle Scholar
  14. [14]
    Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094–6097.CrossRefGoogle Scholar
  15. [15]
    Neaţu, S.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.CrossRefGoogle Scholar
  16. [16]
    Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9, 731–737.CrossRefGoogle Scholar
  17. [17]
    Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.CrossRefGoogle Scholar
  18. [18]
    Marszewski, M.; Cao, S. W.; Yu, J. G.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278.CrossRefGoogle Scholar
  19. [19]
    Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A. R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.CrossRefGoogle Scholar
  20. [20]
    Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl. Catal. B: Environ. 2015, 166–167, 251–259.CrossRefGoogle Scholar
  21. [21]
    Zhang, X. J.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G. P.; Shankar, K. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem., Int. Ed. 2012, 51, 12732–12735.CrossRefGoogle Scholar
  22. [22]
    Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.CrossRefGoogle Scholar
  23. [23]
    Ressler, T. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrotron Rad. 1998, 5, 118–122.CrossRefGoogle Scholar
  24. [24]
    Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.CrossRefGoogle Scholar
  25. [25]
    Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.CrossRefGoogle Scholar
  26. [26]
    Di Vece, M.; Grandjean, D.; Van Bael, M. J.; Romero, C. P.; Wang, X.; Decoster, S.; Vantomme, A.; Lievens, P. Hydrogeninduced ostwald ripening at room temperature in a Pd nanocluster film. Phys. Rev. Lett. 2008, 100, 236105.CrossRefGoogle Scholar
  27. [27]
    Davis, R. J.; Landry, S. M.; Horsley, J. A.; Boudart, M. X-ray-absorption study of the interaction of hydrogen with clusters of supported palladium. Phys. Rev. B 1989, 39, 10580–10583.CrossRefGoogle Scholar
  28. [28]
    Watari, N.; Ohnishi, S.; Ishii, Y. Hydrogen storage in Pd clusters. J. Phys.: Condens. Matter 2000, 12, 6799–6823.Google Scholar
  29. [29]
    Kato, S.; Matam, S. K.; Kerger, P.; Bernard, L.; Battaglia, C.; Vogel, D.; Rowerder, M.; Züttel, A. The origin of the catalytic activity of a metal hydride in CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 6028–6032.CrossRefGoogle Scholar
  30. [30]
    Zhang, S.; Kang, P.; Bakir, M.; Lapides, A. M.; Dares, C. J.; Meyer, T. J. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl. Acad. Sci. USA 2015, 112, 15809–15814.CrossRefGoogle Scholar
  31. [31]
    Park, H. A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 2012, 22, 5304–5307.CrossRefGoogle Scholar
  32. [32]
    Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy 2016, 26, 398–404.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and ChemistryZhejiang Normal UniversityJinhuaChina
  2. 2.Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS), and National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations