Nano Research

, Volume 10, Issue 10, pp 3385–3395 | Cite as

Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing

  • Xiaoxia Wang
  • Hong Zhou
  • Shuangping Yuan
  • Weihao Zheng
  • Ying Jiang
  • Xiujuan Zhuang
  • Hongjun Liu
  • Qinglin Zhang
  • Xiaoli Zhu
  • Xiao Wang
  • Anlian Pan
Research Article
  • 211 Downloads

Abstract

High-performance multiphoton-pumped lasers based on cesium lead halide perovskite nanostructures are promising for nonlinear optics and practical frequency upconversion devices in integrated photonics. However, the performance of such lasers is highly dependent on the quality of the material and cavity, which makes their fabrication challenging. Herein, we demonstrate that cesium lead halide perovskite triangular nanorods fabricated via vapor methods can serve as gain media and effective cavities for multiphoton-pumped lasers. We observed blue-shifts of the lasing modes in the excitation fluence-dependent lasing spectra at increased excitation powers, which fits well with the dynamics of Burstein–Moss shifts caused by the band filling effect. Moreover, efficient multiphoton lasing in CsPbBr3 nanorods can be realized in a wide excitation wavelength range (700–1,400 nm). The dynamics of multiphoton lasing were investigated by time-resolved photoluminescence spectroscopy, which indicated that an electron–hole plasma is responsible for the multiphoton-pumped lasing. This work could lead to new opportunities and applications for cesium lead halide perovskite nanostructures in frequency upconversion lasing devices and optical interconnect systems.

Keywords

cesium lead halide perovskite nanorods triangular cross-section multiphoton-pumped laser time-resolved photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1551_MOESM1_ESM.pdf (971 kb)
Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing

References

  1. [1]
    Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000–1008.CrossRefGoogle Scholar
  2. [2]
    Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630–638.CrossRefGoogle Scholar
  3. [3]
    Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.CrossRefGoogle Scholar
  4. [4]
    Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.CrossRefGoogle Scholar
  5. [5]
    Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.CrossRefGoogle Scholar
  6. [6]
    Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yi, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.CrossRefGoogle Scholar
  7. [7]
    Wang, Y. L.; Guan, X.; Li, D. H.; Cheng, H.-C.; Duan, X. D.; Lin, Z. Y.; Duan, X. F. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 2017, 10, 1223–1233.CrossRefGoogle Scholar
  8. [8]
    You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2015, 11, 75–81.CrossRefGoogle Scholar
  9. [9]
    Li, J. Q.; Bade, S. G. R.; Shan, X.; Yu, Z. B. Single-layer light-emitting diodes using organometal halide perovskite/ poly(ethylene oxide) composite thin films. Adv. Mater. 2015, 27, 5196–5202.CrossRefGoogle Scholar
  10. [10]
    Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 127, 15644–15648.CrossRefGoogle Scholar
  11. [11]
    Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.CrossRefGoogle Scholar
  12. [12]
    Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.CrossRefGoogle Scholar
  13. [13]
    Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.CrossRefGoogle Scholar
  14. [14]
    Tang, X. S.; Hu, Z. P.; Chen, W. W.; Xing, X.; Zang, Z. G.; Hu, W.; Qiu, J.; Du, J.; Leng, Y. X.; Jiang, X. F. et al. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy 2016, 28, 462–468.CrossRefGoogle Scholar
  15. [15]
    Xing, G. C.; Liao, Y. L.; Wu, X. Y.; Chakrabortty, S.; Liu, X. F.; Yeow, E. K. L.; Chan, Y.; Sum, T. C. Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. ACS Nano 2012, 6, 10835–10844.CrossRefGoogle Scholar
  16. [16]
    Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.CrossRefGoogle Scholar
  17. [17]
    Wang, Y.; Ta, V. D.; Gao, Y.; He, T. C.; Chen, R.; Mutlugun, E.; Demir, H. V.; Sun, H. D. Stimulated emission and lasing from CdSe/CdS/ZnS core–multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater. 2014, 26, 2954–2961.CrossRefGoogle Scholar
  18. [18]
    Zhang, L. C.; Wang, K.; Liu, Z.; Yang, G.; Shen, G. Z.; Lu, P. X. Two-photon pumped lasing in a single CdS microwire. Appl. Phys. Lett. 2013, 102, 211915.CrossRefGoogle Scholar
  19. [19]
    Yu, J. H.; Kwon, S. H.; Petrášek, Z.; Park, O. K.; Jun, S. W.; Shin, K.; Choi, M.; Park, Y. I.; Park, K.; Na, H. B. et al. Highresolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater. 2013, 12, 359–366.CrossRefGoogle Scholar
  20. [20]
    Zhang, C. F.; Zhang, F.; Zhu, T.; Cheng, A.; Xu, J.; Zhang, Q.; Mohney, S. E.; Henderson, R. H.; Wang, Y. A. Twophoton- pumped lasing from colloidal nanocrystal quantum dots. Opt. Lett. 2008, 33, 2437–2439.CrossRefGoogle Scholar
  21. [21]
    He, G. S.; Markowicz, P. P.; Lin, T. C.; Prasad, P. N. Observation of stimulated emission by direct three-photon excitation. Nature 2002, 415, 767–770.CrossRefGoogle Scholar
  22. [22]
    Wang, X.; Zhuang, X. J.; Wackenhut, F.; Li, Y. Y.; Pan, A. L.; Meixner, A. J. Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser Photonics Rev. 2016, 10, 835–842.CrossRefGoogle Scholar
  23. [23]
    Zhou, H.; Wang, X. X.; Zhuang, X. J.; Pan, A. L. Second harmonic generation and waveguide properties in perovskite Na0.5Bi0.5TiO3 nanowires. Opt. Lett. 2016, 41, 3803–3805.CrossRefGoogle Scholar
  24. [24]
    Clark, D. J.; Stoumpos, C. C.; Saouma, F. O.; Kanatzidis, M. G.; Jang, J. I. Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr3 single crystal at room temperature. Phys. Rev. B. 2016, 93, 195202.CrossRefGoogle Scholar
  25. [25]
    Gu, Z. Y.; Wang, K. Y.; Sun, W. Z.; Li, J. K.; Liu, S.; Song, Q. H.; Xiao, S. M. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 2016, 4, 472–479.CrossRefGoogle Scholar
  26. [26]
    Walters, G.; Sutherland, B. R.; Hoogland, S.; Shi, D.; Comin, R.; Sellan, D. P.; Bakr, O. M.; Sargent, E. H. Two-photon absorption in organometallic bromide perovskites. ACS Nano 2015, 9, 9340–9346.CrossRefGoogle Scholar
  27. [27]
    Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B.; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448–453.CrossRefGoogle Scholar
  28. [28]
    Xu, Y. Q.; Chen, Q.; Zhang, C. F.; Wang, R.; Wu, H.; Zhang, X. Y.; Xing, G. H.; Yu, W. W.; Wang, X. Y.; Zhang, Y. et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 2016, 138, 3761–3768.CrossRefGoogle Scholar
  29. [29]
    Zhang, W.; Peng, L.; Liu, J.; Tang, A. W.; Hu, J. S.; Yao, J. N.; Zhao, Y. S. Controlling the cavity structures of twophoton- pumped perovskite microlasers. Adv. Mater. 2016, 28, 4040–4046.CrossRefGoogle Scholar
  30. [30]
    Gradečak, S.; Qian, F.; Li, Y.; Park, H. G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.CrossRefGoogle Scholar
  31. [31]
    Qian, F.; Li, Y.; Gradečak, S.; Park, H. G.; Dong, Y. J.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008, 7, 701–706.CrossRefGoogle Scholar
  32. [32]
    Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 2014, 5, 4953.CrossRefGoogle Scholar
  33. [33]
    Liu, X. W.; Xu, P. F.; Wu, Y. P.; Yang, Z. Y.; Meng, C.; Yang, W. S.; Li, J. B.; Wang, D. L.; Liu, X.; Yang, Q. Control, optimization and measurement of parameters of semiconductor nanowires lasers. Nano Energy 2015, 14, 340–354.CrossRefGoogle Scholar
  34. [34]
    Zhou, H.; Yuan, S. P.; Wang, X. X.; Xu, T.; Wang, X.; Li, H. L.; Zheng, W. H.; Fan, P.; Li, Y. Y.; Sun, L. T. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 2017, 11, 1189–1195.CrossRefGoogle Scholar
  35. [35]
    He, G. S.; Tan, L. S.; Zheng, Q. D.; Prasad, P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330.CrossRefGoogle Scholar
  36. [36]
    Horton, N. G.; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.; Schaffer, C. B.; Xu, C. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 2013, 7, 205–209.CrossRefGoogle Scholar
  37. [37]
    Zhang, Q. L.; Zhu, X. L.; Li, Y. Y.; Liang, J. W.; Chen, T. R.; Fan, P.; Zhou, H.; Hu, W.; Zhuang, X. J.; Pan, A. L. Nanolaser arrays based on individual waved CdS nanoribbons. Laser Photonics Rev. 2016, 10, 458–464.CrossRefGoogle Scholar
  38. [38]
    Kawamura, K.-I.; Maekawa, K.; Yanagi, H.; Hirano, M.; Hosono, H. Observation of carrier dynamics in CdO thin films by excitation with femtosecond laser pulse. Thin Solid Films 2003, 445, 182–185.CrossRefGoogle Scholar
  39. [39]
    Kamat, P. V.; Dimitrijevic, N. M.; Nozik, A. J. Dynamic Burstein–Moss shift in semiconductor colloids. J. Phys. Chem. 1989, 93, 2873–2875.CrossRefGoogle Scholar
  40. [40]
    Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737–743.CrossRefGoogle Scholar
  41. [41]
    Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T. Single GaAs/GaAsP coaxial core–shell nanowire lasers. Nano Lett. 2009, 9, 112–116.CrossRefGoogle Scholar
  42. [42]
    Liao, Q.; Hu, K.; Zhang, H. H.; Wang, X. D.; Yao, J. N.; Fu, H. B. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater. 2015, 27, 3405–3410.CrossRefGoogle Scholar
  43. [43]
    Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.CrossRefGoogle Scholar
  44. [44]
    Muñoz, M.; Pollak, F. H.; Kahn, M.; Ritter, D.; Kronik, L.; Cohen, G. M. Burstein–Moss shift of n-doped In0.53Ga0.47As/InP. Phys. Rev. B. 2001, 63, 233302.CrossRefGoogle Scholar
  45. [45]
    Johnson, J. C.; Yan, H. Q.; Yang, P. D.; Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 2003, 107, 8816–8828.CrossRefGoogle Scholar
  46. [46]
    Campillo, A. J.; Chang, R. K. Optical Processes in Microcavities; World Scientific: Singapore, 1996.Google Scholar
  47. [47]
    Johnson, J. C.; Knutsen, K. P.; Yan, H. Q.; Law, M.; Zhang, Y. F.; Yang, P. D.; Saykally, R. J. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett. 2004, 4, 197–204.CrossRefGoogle Scholar
  48. [48]
    Röder, R.; Wille, M.; Geburt, S.; Rensberg, J.; Zhang, M. Y.; Lu, J. G.; Capasso, F.; Buschlinger, R.; Peschel, U.; Ronning, C. Continuous wave nanowire lasing. Nano Lett. 2013, 13, 3602–3606.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaoxia Wang
    • 1
  • Hong Zhou
    • 1
  • Shuangping Yuan
    • 1
  • Weihao Zheng
    • 1
  • Ying Jiang
    • 1
  • Xiujuan Zhuang
    • 1
  • Hongjun Liu
    • 1
  • Qinglin Zhang
    • 1
  • Xiaoli Zhu
    • 1
  • Xiao Wang
    • 1
    • 2
  • Anlian Pan
    • 1
  1. 1.School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of TübingenTübingenGermany

Personalised recommendations