Nano Research

, Volume 10, Issue 10, pp 3377–3384 | Cite as

Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps

  • Yan-Fang Zhang
  • Yi Zhang
  • Geng Li
  • Jianchen Lu
  • Yande Que
  • Hui Chen
  • Reinhard Berger
  • Xinliang Feng
  • Klaus Müllen
  • Xiao Lin
  • Yu-Yang Zhang
  • Shixuan Du
  • Sokrates T. Pantelides
  • Hong-Jun Gao
Research Article
  • 95 Downloads

Abstract

Unlike graphene sheets, graphene nanoribbons (GNRs) can exhibit semiconducting band gap characteristics that can be tuned by controlling impurity doping and the GNR widths and edge structures. However, achieving such control is a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently synthesized via surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. In principle, GNR heterojunctions can be fabricated by mixing two different monomers. In this paper, we report the fabrication and characterization of chevron-type GNRs using sulfur-substituted oligophenylene monomers to produce GNRs and related heterostructures for the first time. First-principles calculations show that the GNR gaps can be tailored by applying different sulfur configurations from cyclodehydrogenated isomers via debromination and intramolecular cyclodehydrogenation. This feature should enable a new approach for the creation of multiple GNR heterojunctions by engineering their sulfur configurations. These predictions have been confirmed via scanning tunneling microscopy and scanning tunneling spectroscopy. For example, we have found that the S-containing GNRs contain segments with distinct band gaps, i.e., a sequence of multiple heterojunctions that results in a sequence of quantum dots. This unusual intraribbon heterojunction sequence may be useful in nanoscale optoelectronic applications that use quantum dots.

Keywords

bottom-up fabrication chevron-type graphene nanoribbons nanoscale quantum dots scanning tunneling microscopy density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1550_MOESM1_ESM.pdf (715 kb)
Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps

References

  1. [1]
    Dutta, S.; Pati, S. K. et al., Novel properties of graphene nanoribbons: A review, J. Mater. Chem. 2010, 20, 8207–8223.CrossRefGoogle Scholar
  2. [2]
    Kim, W. Y.; Kim, K. S. et al., Prediction of very large values of magnetoresistance in a graphene nanoribbon device, Nat. Nanotechnol. 2008, 3, 408–412.CrossRefGoogle Scholar
  3. [3]
    Koch, M.; Ample, F.; Joachim, C.; Grill, L. et al., Voltage-dependent conductance of a single graphene nanoribbon, Nat. Nanotechnol. 2012, 7, 713–717.CrossRefGoogle Scholar
  4. [4]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. et al., Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  5. [5]
    Shifrina, Z. B.; Averina, M. S.; Rusanov, A. L.; Wagner, M.; Mü llen, K. et al., Branched polyphenylenes by repetitive Diels–Alder cycloaddition, Macromolecules 2000, 33, 3525–3529.CrossRefGoogle Scholar
  6. [6]
    Wu, X. J.; Zeng, X. C. et al., Sawtooth-like graphene nanoribbon, Nano Res. 2008, 1, 40–45.CrossRefGoogle Scholar
  7. [7]
    Bets, K. V.; Yakobson, B. I. et al., Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons, Nano Res. 2009, 2, 161–166.CrossRefGoogle Scholar
  8. [8]
    Huang, H.; Wei, D. C.; Sun, J. T.; Wong, S. L.; Feng, Y. P.; Castro Neto, A. H.; Wee, A. T. S. et al., Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons, Sci. Rep. 2012, 2, 983.CrossRefGoogle Scholar
  9. [9]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. et al., Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 2006, 97, 216803.CrossRefGoogle Scholar
  10. [10]
    Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. et al., Quasiparticle energies and band gaps in graphene nanoribbons, Phys. Rev. Lett. 2007, 99, 186801.CrossRefGoogle Scholar
  11. [11]
    Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. et al., Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 2013, 7, 6123–6128.CrossRefGoogle Scholar
  12. [12]
    Ritter, K. A.; Lyding, J. W. et al., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 2009, 8, 235–242.CrossRefGoogle Scholar
  13. [13]
    Bronner, C.; Stremlau, S.; Gille, M.; Brauße, F.; Haase, A.; Hecht, S.; Tegeder, P. et al., Aligning the band gap of graphene nanoribbons by monomer doping, Angew. Chem., Int. Ed. 2013, 52, 4422–4425.CrossRefGoogle Scholar
  14. [14]
    Martins, T. B.; Miwa, R. H.; da Silva, A. J. R.; Fazzio, A. et al., Electronic and transport properties of boron-doped graphene nanoribbons, Phys. Rev. Lett. 2007, 98, 196803.CrossRefGoogle Scholar
  15. [15]
    Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Müllen, K.; Gao, H. J. et al., Direct visualization of atomically precise nitrogen-doped graphene nanoribbons, Appl. Phys. Lett. 2014, 105, 023101.CrossRefGoogle Scholar
  16. [16]
    Li, Y. F.; Zhou, Z.; Shen, P. W.; Chen, Z. F. et al., Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons, ACS Nano 2009, 3, 1952–1958.CrossRefGoogle Scholar
  17. [17]
    Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. et al., Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 2010, 466, 470–473.CrossRefGoogle Scholar
  18. [18]
    Narita, A.; Feng, X. L.; Müllen, K. et al., Bottom-up synthesis of chemically precise graphene nanoribbons, Chem. Rec. 2015, 15, 295–309.CrossRefGoogle Scholar
  19. [19]
    Narita, A.; Verzhbitskiy, I. A.; Frederickx, W.; Mali, K. S.; Jensen, S. A.; Hansen, M. R.; Bonn, M.; De Feyter, S.; Casiraghi, C.; Feng, X. L. et al. et al., Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with nearinfrared absorption, ACS Nano 2014, 8, 11622–11630.CrossRefGoogle Scholar
  20. [20]
    Liang, L. B.; Meunier, V. et al., Atomically precise graphene nanoribbon heterojunctions for excitonic solar cells, J. Phys. Chem. C 2015, 119, 775–783.CrossRefGoogle Scholar
  21. [21]
    Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. et al., Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nat. Nanotechnol. 2015, 10, 156–160.CrossRefGoogle Scholar
  22. [22]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. et al., Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  23. [23]
    Kresse, G.; Furthmüller, J. et al., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  24. [24]
    Kresse, G.; Hafner, J. et al., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 1993, 47, 558–561.CrossRefGoogle Scholar
  25. [25]
    Tersoff, J.; Hamann, D. R. et al., Theory of the scanning tunneling microscope, Phys. Rev. B 1985, 31, 805–813.CrossRefGoogle Scholar
  26. [26]
    Saleh, M.; Baumgarten, M.; Mavrinskiy, A.; Schäfer, T.; Müllen, K. et al., Triphenylene-based polymers for blue polymeric light emitting diodes, Macromolecules 2010, 43, 137–143.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yan-Fang Zhang
    • 1
    • 5
  • Yi Zhang
    • 1
  • Geng Li
    • 1
  • Jianchen Lu
    • 1
  • Yande Que
    • 1
  • Hui Chen
    • 1
  • Reinhard Berger
    • 2
    • 3
  • Xinliang Feng
    • 3
    • 4
  • Klaus Müllen
    • 2
  • Xiao Lin
    • 1
  • Yu-Yang Zhang
    • 1
    • 5
  • Shixuan Du
    • 1
  • Sokrates T. Pantelides
    • 5
    • 1
  • Hong-Jun Gao
    • 1
  1. 1.Institute of Physics & University of Chinese Academy of SciencesChinese Academy of SciencesBeijingChina
  2. 2.Max Planck Institute for Polymer ResearchMainzGermany
  3. 3.Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food ChemistryTechnische Universität DresdenDresdenGermany
  4. 4.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Department of Physics and Astronomy and Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleUSA

Personalised recommendations