Nano Research

, Volume 10, Issue 5, pp 1840–1846 | Cite as

Near-infrared light activated persistent luminescence nanoparticles via upconversion

  • Zhanjun Li
  • Ling Huang
  • Yuanwei Zhang
  • Yang Zhao
  • Hong Yang
  • Gang Han
Research Article

Abstract

Persistent luminescence nanoparticles (PLNPs) and upconversion nanoparticles (UCNPs) are two special optical imaging nanoprobes. In this study, efficient upconverted persistent luminescence (UCPL) is realized by combining their unique features into polymethyl methacrylate, forming a film composed of both PLNPs and UCNPs. The red persistent luminescence (~640 nm) of the PLNPs (CaS:Eu,Tm,Ce) can be activated by upconverted green emission of UCNPs (β-NaYF4:Yb,Er@NaYF4) excited by near-infrared light (NIR). Using this strategy, both the unique optical properties of PLNPs and UCNPs can be optimally synergized, thus generating efficient upconversion, photoluminescence, and UCPL simultaneously. The UCPL system has potential applications in in vivo bioimaging by simply monitoring the biocompatible low power density of NIR-light-excited persistent luminescence. Due to its simplicity, we anticipate that this method for the preparation of UCPL composite can be easily adjusted using other available upconversion and persistent phosphor pairs for a number of biophotonic and photonic applications.

Keywords

nanoparticles imaging persistent luminescence upconversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1548_MOESM1_ESM.pdf (908 kb)
Near-infrared light activated persistent luminescence nanoparticles via upconversion

References

  1. [1]
    van den Eeckhout, K.; Smet, P. F.; Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 2010, 3, 2536–2566.CrossRefGoogle Scholar
  2. [2]
    Li, Y.; Gecevicius, M.; Qiu, J. R. Long persistent phosphorsfrom fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136.CrossRefGoogle Scholar
  3. [3]
    le Masne de Chermont, Q.; Chaneac, C.; Seguin, J.; Pelle, F.; Maitrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.CrossRefGoogle Scholar
  4. [4]
    Liang, Y. J.; Liu, F.; Chen, Y. F.; Sun, K. N.; Pan, Z. W. Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor. Dalton Trans. 2016, 45, 1322–1326.CrossRefGoogle Scholar
  5. [5]
    Liu, F.; Liang, Y. J.; Chen, Y. F.; Pan, Z. W. Divalent nickel-activated gallate-based persistent phosphors in the short-wave infrared. Adv. Opt. Mater. 2016, 4, 562–566.CrossRefGoogle Scholar
  6. [6]
    Li, Y.; Li, Y. Y.; Chen, R. C.; Sharafudeen, K.; Zhou, S. F.; Gecevicius, M.; Wang, H. H.; Dong, G. P.; Wu, Y. L.; Qin, X. X. et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180.CrossRefGoogle Scholar
  7. [7]
    Xu, J.; Ueda, J.; Kuroishi, K.; Tanabe, S. Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence. Scr. Mater. 2015, 102, 47–50.CrossRefGoogle Scholar
  8. [8]
    Jin, Y. H.; Hu, Y. H.; Chen, L.; Ju, G. F.; Wu, H. Y.; Mu, Z. F.; He, M.; Xue, F. H. Luminescent properties of a green long persistent phosphor Li2MgGeO4:Mn2+. Opt. Mater. Express 2016, 6, 929–937.CrossRefGoogle Scholar
  9. [9]
    Kong, J. T.; Zheng, W.; Liu, Y. S.; Li, R. F.; Ma, E.; Zhu, H. M.; Chen, X. Y. Persistent luminescence from Eu3+ in SnO2 nanoparticles. Nanoscale 2015, 7, 11048–11054.CrossRefGoogle Scholar
  10. [10]
    Guo, H. J.; Wang, Y. H.; Chen, W. B.; Zeng, W.; Han, S. C.; Li, G.; Li, Y. Y. Controlling and revealing the trap distributions of Ca6BaP4O17:Eu2+, R3+ (R = Dy, Tb, Ce, Gd, Nd) by codoping different trivalent lanthanides. J. Mater. Chem. C 2015, 3, 11212–11218.CrossRefGoogle Scholar
  11. [11]
    Bessière, A.; Lecointre, A.; Benhamou, R. A.; Suard, E.; Wallez, G.; Viana, B. How to induce red persistent luminescence in biocompatible Ca3(PO4)2. J. Mater. Chem. C 2013, 1, 1252–1259.CrossRefGoogle Scholar
  12. [12]
    Palner, M.; Pu, K. Y.; Shao, S.; Rao, J. H. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem., Int. Ed. 2015, 54, 11477–11480.CrossRefGoogle Scholar
  13. [13]
    Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.CrossRefGoogle Scholar
  14. [14]
    Maldiney, T.; Doan, B. T.; Alloyeau, D.; Bessodes, M.; Scherman, D.; Richard, C. Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater. 2015, 25, 331–338.CrossRefGoogle Scholar
  15. [15]
    Abdukayum, A.; Yang, C. X.; Zhao, Q.; Chen, J. T.; Dong, L. X.; Yan, X. P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem. 2014, 86, 4096–4101.CrossRefGoogle Scholar
  16. [16]
    Dai, W. B.; Lei, Y. F.; Ye, S.; Song, E. H.; Chen, Z.; Zhang, Q. Y. Mesoporous nanoparticles Gd2O3@mSiO2/ZnGa2O4:Cr3+,Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 2016, 4, 1842–1852.CrossRefGoogle Scholar
  17. [17]
    Shi, J. P.; Sun, X.; Li, J. L.; Man, H. Z.; Shen, J. S.; Yu, Y. K.; Zhang, H. W. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 2015, 37, 260–270.CrossRefGoogle Scholar
  18. [18]
    Wu, S. Q.; Chi, C. W.; Yang, C. X.; Yan, X. P. Penetrating peptide-bioconjugated persistent nanophosphors for longterm tracking of adipose-derived stem cells with superior signal-to-noise ratio. Anal. Chem. 2016, 88, 4114–4121.CrossRefGoogle Scholar
  19. [19]
    Zhang, L.; Lei, J. P.; Liu, J. T.; Ma, F. J.; Ju, H. X. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 2015, 67, 323–334.CrossRefGoogle Scholar
  20. [20]
    Tang, Y. R.; Song, H. J.; Su, Y. Y.; Lv, Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 2013, 85, 11876–11884.CrossRefGoogle Scholar
  21. [21]
    Tang, J.; Su, Y. Y.; Deng, D. Y.; Zhang, L. C.; Yang, N.; Lv, Y. A persistent luminescence microsphere-based probe for convenient imaging analysis of dopamine. Analyst 2016, 141, 5366–5373.CrossRefGoogle Scholar
  22. [22]
    Chuang, Y. J.; Liu, F.; Wang, W.; Kanj, M. Y.; Poitzsch, M. E.; Pan, Z. W. Ultra-sensitive in-situ detection of nearinfrared persistent luminescent tracer nanoagents in crude oil-water mixtures. Sci. Rep. 2016, 6, 27993.CrossRefGoogle Scholar
  23. [23]
    Liu, F.; Yan, W. Z.; Chuang, Y. J.; Zhen, Z. P.; Xie, J.; Pan, Z. W. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep. 2013, 3, 1554.CrossRefGoogle Scholar
  24. [24]
    Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426.CrossRefGoogle Scholar
  25. [25]
    Li, Z. J.; Zhang, Y. W.; Wu, X.; Wu, X. Q.; Maudgal, R.; Zhang, H. W.; Han, G. In vivo repeatedly charging nearinfrared- emitting mesoporous SiO2/ZnGa2O4:Cr3+ persistent luminescence nanocomposites. Adv. Sci. 2015, 2, 1500001.CrossRefGoogle Scholar
  26. [26]
    Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable nearinfrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.CrossRefGoogle Scholar
  27. [27]
    Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D. ZnGa2O4:Cr3+: A new red long-lasting phosphor with high brightness. Opt. Express 2011, 19, 10131–10137.CrossRefGoogle Scholar
  28. [28]
    Zhuang, Y. X.; Ueda, J.; Tanabe, S. Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping. Appl. Phys. Express 2013, 6, 052602.CrossRefGoogle Scholar
  29. [29]
    Zhuang, Y. X.; Ueda, J.; Tanabe, S. Tunable trap depth in Zn(Ga1–xAlx)2O4:Cr,Bi red persistent phosphors: Considerations of high-temperature persistent luminescence and photostimulated persistent luminescence. J. Mater. Chem. C 2013, 1, 7849–7855.CrossRefGoogle Scholar
  30. [30]
    Pan, Z. W.; Lu, Y. Y.; Liu, F. Sunlight-activated longpersistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63.CrossRefGoogle Scholar
  31. [31]
    Liu, F.; Liang, Y. J.; Pan, Z. W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+,Yb3+,Er3+ phosphor. Phys. Rev. Lett. 2014, 113, 177401.CrossRefGoogle Scholar
  32. [32]
    Li, Z. J.; Zhang, Y. W.; La, H. E.; Zhu, R.; El-Banna, G.; Wei, Y. Z.; Han, G. Upconverting NIR photons for bioimaging. Nanomaterials 2015, 5, 2148–2168.CrossRefGoogle Scholar
  33. [33]
    Chen, X.; Peng, D. F.; Ju, Q.; Wang, F. Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 2015, 44, 1318–1330.CrossRefGoogle Scholar
  34. [34]
    Idris, N. M.; Jayakumar, M. K. G.; Bansal, A.; Zhang, Y. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 2015, 44, 1449–1478.CrossRefGoogle Scholar
  35. [35]
    Wu, X. M.; Zhu, W. H. Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem. Soc. Rev. 2015, 44, 4179–4184.CrossRefGoogle Scholar
  36. [36]
    Jia, D. D. Enhancement of long-persistence by Ce co-doping in CaS:Eu2+,Tm3+ red phosphor. J. Electrochem. Soc. 2006, 153, H198–H201.CrossRefGoogle Scholar
  37. [37]
    Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.CrossRefGoogle Scholar
  38. [38]
    Van Haecke, J. E.; Smet, P. F.; De Keyser, K.; Poelman, D. Single crystal CaS:Eu and SrS:Eu luminescent particles obtained by solvothermal synthesis. J. Electrochem. Soc. 2007, 154, J278–J282.CrossRefGoogle Scholar
  39. [39]
    Rodríguez Burbano, D. C.; Sharma, S. K.; Dorenbos, P.; Viana, B.; Capobianco, J. A. Persistent and photostimulated red emission in CaS:Eu2+,Dy3+ nanophosphors. Adv. Opt. Mater. 2015, 3, 551–557.CrossRefGoogle Scholar
  40. [40]
    Guo, C. F.; Huang, D. X.; Su, Q. Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng. B 2006, 130, 189–193.CrossRefGoogle Scholar
  41. [41]
    Sakdinawat, A.; Attwood, D. Nanoscale X-ray imaging. Nat. Photonics 2010, 4, 840–848.CrossRefGoogle Scholar
  42. [42]
    Grayson, W. L.; Bunnell, B. A.; Martin, E.; Frazier, T.; Hung, B. P.; Gimble, J. M. Stromal cells and stem cells in clinical bone regeneration. Nat. Rev. Endocrinol. 2015, 11, 140–150.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhanjun Li
    • 1
    • 2
  • Ling Huang
    • 1
  • Yuanwei Zhang
    • 1
  • Yang Zhao
    • 1
  • Hong Yang
    • 1
  • Gang Han
    • 1
  1. 1.Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.School of EnvironmentJinan UniversityGuangzhouChina

Personalised recommendations