Nano Research

, Volume 10, Issue 10, pp 3346–3357 | Cite as

Polymer-assisted fabrication of gold nanoring arrays

  • Hongxu Chen
  • Shilin Mu
  • Liping Fang
  • Huaizhong Shen
  • Junhu Zhang
  • Bai Yang
Research Article


In this paper, we report a new strategy for the fabrication of gold nanoring arrays via colloidal lithography and polymer-assisted self-assembly of gold nanoparticles (Au NPs). First, multi-segmented polymer nanorod arrays were fabricated via colloidal lithography. They were then used as templates for Au NP adsorption, which resulted in nanoparticles on the poly(4-vinyl pyridine) (P4VP) segments. Continuous gold nanorings were formed after electroless deposition of gold. The diameter, quantity, and spacing of the gold nanorings could be tuned. Three dimensional coaxial gold nanorings with varying diameters could be fabricated on a polymer nanorod by modifying the etch parameters. The nanorings exhibited optical plasmonic resonances at theoretically predicted wavelengths. In addition, the polymer-assisted gold nanorings were released from the substrate to generate a high yield of free-standing nanorings. This simple, versatile method was also used to prepare nanorings from other metals such as palladium.


gold nanorings colloidal lithography self-assembly plasmonic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (No. 21474037) and Doctoral Fund of Ministry of Education of China (No. 20130061110019).

Supplementary material

12274_2017_1547_MOESM1_ESM.pdf (561 kb)
Polymer-assisted fabrication of gold nanoring arrays


  1. [1]
    Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.CrossRefGoogle Scholar
  2. [2]
    Liusman, C.; Li, S. Z.; Chen, X. D.; Wei, W.; Zhang, H.; Schatz, G. C.; Boey, F.; Mirkin, C. A. Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography. ACS Nano 2010, 4, 7676–7682.CrossRefGoogle Scholar
  3. [3]
    Baek, K. M.; Kim, J. M.; Jeong, J, W.; Lee, S. Y.; Jung, Y. S. Sequentially self-assembled rings-in-mesh nanoplasmonic arrays for surface-enhanced Raman spectroscopy. Chem. Mater. 2015, 27, 5007-5013.CrossRefGoogle Scholar
  4. [4]
    Xue, C.; Mirkin, C. A. pH-switchable silver nanoprism growth pathways. Angew. Chem., Int. Ed. 2007, 46, 2036–2038.Google Scholar
  5. [5]
    Zhang, J.; Li, S. Z.; Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Plasmon mediated synthesis of silver triangular bipyramids. Angew. Chem., Int. Ed. 2009, 48, 7787–7791.CrossRefGoogle Scholar
  6. [6]
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.CrossRefGoogle Scholar
  7. [7]
    Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 2007, 40, 53–62.CrossRefGoogle Scholar
  8. [8]
    Lu, X. M.; Au, L.; McLellan, J.; Li, Z.-Y.; Marquez, M.; Xia, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1769.CrossRefGoogle Scholar
  9. [9]
    Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.Google Scholar
  10. [10]
    Larsson, E. M.; Alegret, J.; Kä ll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263.CrossRefGoogle Scholar
  11. [11]
    Cetin, A. E.; Altug, H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 2012, 6, 9989–9995.CrossRefGoogle Scholar
  12. [12]
    Clark, A. W.; Glidle, A.; Cumming, D. R. S.; Cooper, J. M. Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 2009, 131, 17615–17619.CrossRefGoogle Scholar
  13. [13]
    Clark, A. W.; Sheridan, A. K.; Glidle, A.; Cumming, D. R. S.; Cooper, J. M. Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl. Phys. Lett. 2007, 91, 093109.CrossRefGoogle Scholar
  14. [14]
    Gwinner, M. C.; Koroknay, E.; Fu, L. W.; Patoka, P.; Kandulski, W.; Giersig, M.; Giessen, H. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography. Small 2009, 5, 400–406.CrossRefGoogle Scholar
  15. [15]
    Cataldo, S.; Zhao, J.; Neubrech, F.; Frank, B.; Zhang, C. J.; Braun, P. V.; Giessen, H. Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. ACS Nano 2012, 6, 979–985.CrossRefGoogle Scholar
  16. [16]
    Babayan, Y.; McMahon, J. M.; Li, S. Z.; Gray, S. K.; Schatz, G. C.; Odom, T. W. Confining standing waves in optical corrals. ACS Nano 2009, 3, 615–620.CrossRefGoogle Scholar
  17. [17]
    Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kä ll, M.; Bryant, G. W.; García de Abajo, F. J. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401.CrossRefGoogle Scholar
  18. [18]
    Hao, F.; Larsson, E. M.; Ali, T. A.; Sutherland, D. S.; Nordlander, P. Shedding light on dark plasmons in gold nanorings. Chem. Phys. Lett. 2008, 458, 262-266.CrossRefGoogle Scholar
  19. [19]
    Halpern, A. R.; Corn, R. M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755–1762.CrossRefGoogle Scholar
  20. [20]
    McLellan, J. M.; Geissler, M.; Xia, Y. N. Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings. J. Am. Chem. Soc. 2004, 126, 10830–10831.CrossRefGoogle Scholar
  21. [21]
    Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K. Nanomachining by colloidal lithography. Small 2006, 2, 458–475.CrossRefGoogle Scholar
  22. [22]
    Yu, X. D.; Zhang, H. G.; Oliverio, J. K.; Braun, P. V. Template-assisted three-dimensional nanolithography via geometrically irreversible processing. Nano Lett. 2009, 9, 4424–4427.CrossRefGoogle Scholar
  23. [23]
    Banaee, M. G.; Crozier, K. B. Gold nanorings as substrates for surface-enhanced raman scattering. Opt. Lett. 2010, 35, 760–762.CrossRefGoogle Scholar
  24. [24]
    Near, R.; Tabor, C.; Duan, J. S.; Pachter, R.; El-Sayed, M. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett. 2012, 12, 2158–2164.CrossRefGoogle Scholar
  25. [25]
    Tsai, C. Y.; Lu, S. P.; Lin, J. W.; Lee, P. T. High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 2011, 98, 153108.CrossRefGoogle Scholar
  26. [26]
    Scheeler, S. P.; Lehr, D.; Kley, E. B.; Pacholski, C. Top-up fabrication of gold nanorings. Chem.—Asian J. 2014, 9, 2072–2076.CrossRefGoogle Scholar
  27. [27]
    Behrens, S.; Habicht, W.; Wagner, K.; Unger, E. Assembly of nanoparticle ring structures based on protein templates. Adv. Mater. 2006, 18, 284–289.CrossRefGoogle Scholar
  28. [28]
    Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.CrossRefGoogle Scholar
  29. [29]
    Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411–3424.CrossRefGoogle Scholar
  30. [30]
    Ofir, Y.; Samanta, B.; Rotello, V. M. Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1814–1825.CrossRefGoogle Scholar
  31. [31]
    Lee, W.; Lee, S. Y.; Briber, R. M.; Rabin, O. Self-assembled SERS substrates with tunable surface plasmon resonances. Adv. Funct. Mater. 2011, 21, 3424–3429.CrossRefGoogle Scholar
  32. [32]
    Chen, H. X.; Wang, T. Q.; Shen, H. Z.; Liu, W. D.; Wang, S. L.; Liu, K.; Zhang, J. H.; Yang, B. Ag nanoparticle/polymer composite barcode nanorods. Nano Res. 2015, 8, 2871–2880.CrossRefGoogle Scholar
  33. [33]
    Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano 2010, 4, 4350–4360.CrossRefGoogle Scholar
  34. [34]
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.CrossRefGoogle Scholar
  35. [35]
    Li, Z. B.; Nan, J. J.; Zhang, X. M.; Ye, S. S.; Shen, H. Z.; Wang, S. L.; Fang, L. P.; Xue, P. H.; Zhang, J. H.; Yang, B. Modulate the morphology and spectroscopic property of gold nanoparticle arrays by polymer-assisted thermal treatment. J. Phys. Chem. C 2015, 119, 11839-11845.CrossRefGoogle Scholar
  36. [36]
    Brown, K. R.; Lyon, L. A.; Fox, A. P.; Reiss, B. D.; Natan, M. J. Hydroxylamine seeding of colloidal Au nanoparticles. 3. Controlled formation of conductive Au films. Chem. Mater. 2000, 12, 314–323.Google Scholar
  37. [37]
    Zhang, X. M.; Ye, S. S.; Zhang, X.; Wu, L. P. Optical properties of SiO2@M (M = Au, Pd, Pt) core–shell nanoparticles: Material dependence and damping mechanisms. J. Mater. Chem. C 2015, 3, 2282–2290.CrossRefGoogle Scholar
  38. [38]
    Bin, D.; Yang, B. B.; Zhang, K.; Wang, C. Q.; Wang, J.; Zhong, J. T.; Feng, Y.; Guo, J.; Du, Y. K. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem.—Eur. J. 2016, 22, 16642–16647.CrossRefGoogle Scholar
  39. [39]
    Hao, F.; Nordlander, P.; Sonnefraud, Y.; Van Dorpe, P.; Maier, S. A. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 2009, 3, 643–652.CrossRefGoogle Scholar
  40. [40]
    Zhang, X. M.; Zhang J. H.; Wang, H.; Hao, Y. D.; Zhang, X.; Wang, T. Q.; Wang, Y. N.; Zhao, R.; Zhang, H.; Yang, B. Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: Morphology and refractive index sensitivity. Nanotechnology 2010, 21, 465702.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hongxu Chen
    • 1
  • Shilin Mu
    • 1
  • Liping Fang
    • 2
  • Huaizhong Shen
    • 1
  • Junhu Zhang
    • 1
  • Bai Yang
    • 1
  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina
  2. 2.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina

Personalised recommendations