Nano Research

, Volume 10, Issue 10, pp 3333–3345 | Cite as

Biofunctionalized upconverting CaF2:Yb,Tm nanoparticles for Candida albicans detection and imaging

  • Małgorzata Misiak
  • Michał Skowicki
  • Tomasz Lipiński
  • Agnieszka Kowalczyk
  • Katarzyna Prorok
  • Sebastian Arabasz
  • Artur Bednarkiewicz
Research Article
  • 84 Downloads

Abstract

Versatile optimization of the synthesis method and composition of Yb3+ and Tm3+ co-doped CaF2 nanoparticles as well as a novel biofunctionalization method were developed and evaluated. Through multistep synthesis, the luminescence intensity of the Tm3+ activator was enhanced by more than 10-fold compared to standard one-step synthesis. The proposed methods were used to homogenously distribute the doping ions within the nanoparticle’s volume and thus reduce luminescence quenching. Optimization of dopant ions concentration led to the selection of the most efficient visible and near-infrared up-converting nanoparticles, which were CaF2 doped with 10% Yb3+ 0.05% Tm3+ and 20% Yb3+ 0.5% Tm3+, respectively. To illustrate the suitability of the synthesized nanoparticles as bio-labels, a dedicated biofunctionalization method was used, and the nanoparticles were applied for labeling and imaging of Candida albicans cells. This method shows great promise because of extremely low background and high specificity because of the presence of the attached molecules.

Keywords

up-conversion luminescence nanomaterials fluoride nanoparticles bioimaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1546_MOESM1_ESM.pdf (4 mb)
Biofunctionalized upconverting CaF2:Yb,Tm nanoparticles for Candida albicans detection and imaging

References

  1. [1]
    Mackowiak, S. A.; Schmidt, A.; Weiss, V.; Argyo, C.; von Schirnding, C.; Bein, T.; Bräuchle, C. Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. Nano Lett. 2013, 13, 2576–2583.CrossRefGoogle Scholar
  2. [2]
    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M. et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016, 6, 35103.CrossRefGoogle Scholar
  3. [3]
    Gnach, A.; Bednarkiewicz, A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 2012, 7, 532–563.CrossRefGoogle Scholar
  4. [4]
    Fang, S.; Wang, C.; Xiang, J.; Cheng, L.; Song, X. J.; Xu, L. G.; Peng, R.; Liu, Z. Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Res. 2014, 7, 1327–1336.CrossRefGoogle Scholar
  5. [5]
    Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliver. Rev. 2008, 60, 1278–1288.CrossRefGoogle Scholar
  6. [6]
    Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630–638.CrossRefGoogle Scholar
  7. [7]
    Zhang, W. J.; Ye, J.; Zhang, Y. Y.; Li, Q. W.; Dong, X. W.; Jiang, H.; Wang, X. M. One-step facile synthesis of fluorescent gold nanoclusters for rapid bio-imaging of cancer cells and small animals. RSC Adv. 2015, 5, 63821–63826.CrossRefGoogle Scholar
  8. [8]
    Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.CrossRefGoogle Scholar
  9. [9]
    Liu, X. G.; Yan, C.-H.; Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1299–1301.CrossRefGoogle Scholar
  10. [10]
    Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.CrossRefGoogle Scholar
  11. [11]
    Rieffel, J.; Chitgupi, U.; Lovell, J. F. Recent advances in higher-order, multimodal, biomedical imaging agents. Small 2015, 11, 4445–4461.CrossRefGoogle Scholar
  12. [12]
    DaCosta, M. V.; Doughan, S.; Han, Y.; Krull, U. J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta 2014, 832, 1–33.CrossRefGoogle Scholar
  13. [13]
    Cheng, L.; Yang, K.; Zhang, S.; Shao, M. W.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010, 3, 722–732.CrossRefGoogle Scholar
  14. [14]
    Liu, J. L.; Cheng, J. T.; Zhang, Y. Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosens. Bioelectron. 2013, 43, 252–256.CrossRefGoogle Scholar
  15. [15]
    Alonso-Cristobal, P.; Vilela, P.; El-Sagheer, A.; Lopez-Cabarcos, E.; Brown, T.; Muskens, O. L.; Rubio-Retama, J.; Kanaras, A. G. Highly sensitive DNA sensor based on upconversion nanoparticles and graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 12422–12429.CrossRefGoogle Scholar
  16. [16]
    Wu, S. J.; Duan, N.; Ma, X. Y.; Xia, Y.; Yu, Y.; Wang, Z. P.; Wang, H. X. Simultaneous detection of enterovirus 71 and coxsackievirus A16 using dual-colour upconversion luminescent nanoparticles as labels. Chem. Commun. 2012, 48, 4866–4868.CrossRefGoogle Scholar
  17. [17]
    Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.CrossRefGoogle Scholar
  18. [18]
    Chatterjee, D. K.; Yong, Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 2008, 3, 73–82.CrossRefGoogle Scholar
  19. [19]
    Wang, C.; Cheng, L.; Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317–330.CrossRefGoogle Scholar
  20. [20]
    Yan, R. X.; Li, Y. D. Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv. Funct. Mater. 2005, 15, 763–770.CrossRefGoogle Scholar
  21. [21]
    Thi Kim Dung, D.; Fukushima, S.; Furukawa, T.; Niioka, H.; Sannomiya, T.; Kobayashi, K.; Yukawa, H.; Baba, Y.; Hashimoto, M.; Miyake, J. Multispectral emissions of lanthanide-doped gadolinium oxide nanophosphors for cathodoluminescence and near-infrared upconversion/downconversion imaging. Nanomaterials 2016, 6, 163.CrossRefGoogle Scholar
  22. [22]
    Lu, H. C.; Yi, G. S.; Zhao, S. Y.; Chen, D. P.; Guo, L.-H.; Cheng, J. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J. Mater. Chem. 2004, 14, 1336–1341.CrossRefGoogle Scholar
  23. [23]
    Boyer, J.-C.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.CrossRefGoogle Scholar
  24. [24]
    Rinkel, T.; Raj, A. N.; Dühnen, S.; Haase, M. Synthesis of 10 nm β-NaYF4:Yb,Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores. Angew. Chem., Int. Ed. 2016, 55, 1164–1167.CrossRefGoogle Scholar
  25. [25]
    Menyuk, N.; Dwight, K.; Pierce, J. W. NaYF4:Yb,Er—An efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21, 159–161.CrossRefGoogle Scholar
  26. [26]
    Ye, X.; Collins, J. E.; Kang, Y.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 22430–22435.CrossRefGoogle Scholar
  27. [27]
    Deng, M. L.; Ma, Y. X.; Huang, S.; Hu, G. F.; Wang, L. Y. Monodisperse upconversion NaYF4 nanocrystals: Syntheses and bioapplications. Nano Res. 2011, 4, 685–694.CrossRefGoogle Scholar
  28. [28]
    Huang, S.; Bai, M.; Wang, L. Y. General and facile surface functionalization of hydrophobic nanocrystals with poly(amino acid) for cell luminescence imaging. Sci. Rep. 2013, 3, 2023.CrossRefGoogle Scholar
  29. [29]
    Boyer, J.-C.; Manseau, M.-P.; Murray, J. I.; van Veggel, F. C. J. M. Surface modification of upconverting NaYF4 nanoparticles with PEG–phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 2010, 26, 1157–1164.CrossRefGoogle Scholar
  30. [30]
    Deng, M. L.; Wang, L. Y. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size. Nano Res. 2014, 7, 782–793.CrossRefGoogle Scholar
  31. [31]
    Pedroni, M.; Piccinelli, F.; Passuello, T.; Giarola, M.; Mariotto, G.; Polizzi, S.; Bettinelli, M.; Speghini, A. Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: Toward efficient materials with near infrared-to-near infrared upconversion emission. Nanoscale 2011, 3, 1456–1460.CrossRefGoogle Scholar
  32. [32]
    Song, J. H.; Zhi, G. L.; Zhang, Y.; Mei, B. C. Synthesis and characterization of CaF2 nanoparticles with different doping concentrations of Er3+. Nano-Micro Lett. 2011, 3, 73–78.CrossRefGoogle Scholar
  33. [33]
    Yi, G. S.; Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329.CrossRefGoogle Scholar
  34. [34]
    Noculak, A.; Podhorodecki, A.; Pawlik, G.; Banski, M.; Misiewicz, J. Ion-ion interactions in β-NaGdF4:Yb3+,Er3+ nanocrystals—The effect of ion concentration and their clustering. Nanoscale 2015, 7, 13784–13792.CrossRefGoogle Scholar
  35. [35]
    Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.CrossRefGoogle Scholar
  36. [36]
    Suyver, J. F.; Grimm, J.; van Veen, M. K.; Biner, D.; Krämer, K. W.; Güdel, H. U. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 2006, 117, 1–12.CrossRefGoogle Scholar
  37. [37]
    Dong, N. N.; Pedroni, M.; Piccinelli, F.; Conti, G.; Sbarbati, A.; Ramírez-Hernández, J. E.; Maestro, L. M.; Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Juarranz, A. et al. NIRto-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 2011, 5, 8665–8671.CrossRefGoogle Scholar
  38. [38]
    Xu, C. T.; Svensson, N.; Axelsson, J.; Svenmarker, P.; Somesfalean, G.; Chen, G. Y.; Liang, H. J.; Liu, H. C.; Zhang, Z. G.; Andersson-Engels, S. Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media. Appl. Phys. Lett. 2008, 93, 171103.CrossRefGoogle Scholar
  39. [39]
    Wang, F.; Chatterjee, D. K.; Li, Z. Q.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 2006, 17, 5786–5791.CrossRefGoogle Scholar
  40. [40]
    Pedroni, M.; Piccinelli, F.; Passuello, T.; Polizzi, S.; Ueda, J.; Haro-González, P.; Martinez Mestro, L.; Jaque, D.; García Solé, J. A.; Bettinelli, M. et al. Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+, Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal. Cryst. Growth Des. 2013, 13, 4906–4913.CrossRefGoogle Scholar
  41. [41]
    Wang, G. F.; Peng, Q.; Li, Y. D. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200–14201.CrossRefGoogle Scholar
  42. [42]
    Prorok, K.; Gnach, A.; Bednarkiewicz, A.; Stręk, W. Energy up-conversion in Tb3+/Yb3+ co-doped colloidal α-NaYF4 nanocrystals. J. Lumin. 2013, 140, 103–109.CrossRefGoogle Scholar
  43. [43]
    Misiak, M.; Prorok, K.; Cichy, B.; Bednarkiewicz, A.; Stręk, W. Thulium concentration quenching in the up-converting α-Tm3+/Yb3+ NaYF4 colloidal nanocrystals. Opt. Mater. 2013, 35, 1124–1128.CrossRefGoogle Scholar
  44. [44]
    Kumar, G. A.; Chen, C. W.; Riman, R. E. Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals. Appl. Phys. Lett. 2007, 90, 093123.CrossRefGoogle Scholar
  45. [45]
    Xia, Z. G.; Du, P. Synthesis and upconversion luminescence properties of CaF2:Yb3+,Er3+ nanoparticles obtained from SBA-15 template. J. Mater. Res. 2010, 25, 2035–2041.CrossRefGoogle Scholar
  46. [46]
    Chen, D. Q.; Lei, L.; Xu, J.; Yang, A. P.; Wang, Y. S. Abnormal size-dependent upconversion emissions and multi-color tuning in Er3+-doped CaF2–YbF3 disordered solid-solution nanocrystals. Nanotechnology 2013, 24, 085708.CrossRefGoogle Scholar
  47. [47]
    Zheng, W.; Zhou, S. Y.; Chen, Z.; Hu, P.; Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Huang, M. D.; Chen, X. Y. Sub-10 nm lanthanide-doped CaF2 nanoprobes for timeresolved luminescent biodetection. Angew. Chem., Int. Ed. 2013, 52, 6671–6676.CrossRefGoogle Scholar
  48. [48]
    Quan, Z. W.; Yang, D. M.; Yang, P. P.; Zhang, X. M.; Lian, H. Z.; Liu, X. M.; Lin, J. Uniform colloidal alkaline earth metal fluoride nanocrystals: Nonhydrolytic synthesis and luminescence properties. Inorg. Chem. 2008, 47, 9509–9517.CrossRefGoogle Scholar
  49. [49]
    Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.CrossRefGoogle Scholar
  50. [50]
    Martins, N.; Ferreira, I. C. F. R.; Barros, L.; Silva, S.; Henriques, M. Candidiasis: Predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 2014, 177, 223–240.CrossRefGoogle Scholar
  51. [51]
    Wahyuningsih, R.; Freisleben, H. J.; Sonntag, H. G.; Schnitzler, P. Simple and rapid detection of Candida albicans DNA in serum by PCR for diagnosis of invasive candidiasis. J. Clin. Microbiol. 2000, 38, 3016–3021.Google Scholar
  52. [52]
    Li, X. M.; Wang, R.; Zhang, F.; Zhao, D. Y. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 2014, 14, 3634–3639.CrossRefGoogle Scholar
  53. [53]
    Ito, M.; Goutaudier, C.; Guyot, Y.; Lebbou, K.; Fukuda, T.; Boulon, G. Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X. J. Phys.-Condens. Matter 2004, 16, 1501–1521.CrossRefGoogle Scholar
  54. [54]
    Sobolev, B. P.; Fedorov, P. P. Phase diagrams of the CaF2-(Y,Ln)F3 systems I. Experimental. J. Less-Common Met. 1978, 60, 33–46.CrossRefGoogle Scholar
  55. [55]
    Sobolev, B. P. Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MFm-RFn (m < n ≤ 4) systems. Crystallogr. Rep. 2012, 57, 434–454.CrossRefGoogle Scholar
  56. [56]
    Durán, N.; Silveira, C. P.; Durán, M.; Martinez, D. S. T. Silver nanoparticle protein corona and toxicity: A minireview. J. Nanobiotechnology 2015, 13, 55.CrossRefGoogle Scholar
  57. [57]
    Vilanova, O.; Mittag, J. J.; Kelly, P. M.; Milani, S.; Dawson, K. A.; Rädler, J. O.; Franzese, G. Understanding the kinetics of protein–nanoparticle corona formation. ACS Nano 2016, 10, 10842–10850.CrossRefGoogle Scholar
  58. [58]
    Wurm, F.; Steinbach, T.; Klok, H. A. One-pot squaric acid diester mediated aqueous protein conjugation. Chem. Commun. 2013, 49, 7815–7817.CrossRefGoogle Scholar
  59. [59]
    Tietze, L. F.; Arlt, M.; Beller, M.; Glüsenkamp, K. H.; Jähde, E.; Rajewsky, M. F. Anticancer agents, 15. Squaric acid diethyl ester: A new coupling reagent for the formation of drug biopolymer conjugates. Synthesis of squaric acid ester amides and diamides. Chem. Ber. 1991, 124, 1215–1221.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Małgorzata Misiak
    • 1
  • Michał Skowicki
    • 1
  • Tomasz Lipiński
    • 2
    • 1
  • Agnieszka Kowalczyk
    • 1
  • Katarzyna Prorok
    • 1
  • Sebastian Arabasz
    • 3
    • 1
  • Artur Bednarkiewicz
    • 1
    • 4
  1. 1.Wrocław Research Centre EIT+WrocławPoland
  2. 2.Insitute of Immunology and Experimental TherapyPolish Academy of SciencesWrocławPoland
  3. 3.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland
  4. 4.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland

Personalised recommendations