Nano Research

, Volume 10, Issue 10, pp 3324–3332 | Cite as

Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation

Research Article
  • 108 Downloads

Abstract

Although nanostructures based on noble metal alloys are widely utilized in (electro)catalysis, their low-temperature synthesis remains an enormous challenge due to the different Nernst equilibrium potentials of metal precursors. Herein, we describe the successful synthesis of trimetallic PtRhNi alloy nanoassemblies (PtRhNi-ANAs) with tunable Pt/Rh ratios using a simple mixed cyanogel reduction method and provide a detailed characterization of their chemical composition, morphology, and structure. Additionally, the electrochemical properties of PtRhNi-ANAs are examined by cyclic voltammetry, revealing composition-dependent electrocatalytic activity in the ethanol oxidation reaction (EOR). Compared to a commercial Pt black electrocatalyst, optimized Pt3Rh1Ni2-ANAs display remarkably enhanced EOR electrocatalytic performance in alkaline media.

Keywords

cyanogel trimetallic alloy electrocatalysis activity ethanol oxidation reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1545_MOESM1_ESM.pdf (1.7 mb)
Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation

References

  1. [1]
    Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.CrossRefGoogle Scholar
  2. [2]
    Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.CrossRefGoogle Scholar
  3. [3]
    Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450.CrossRefGoogle Scholar
  4. [4]
    Puthiyapura, V. K.; Brett, D. J. L.; Russell, A. E.; Lin, W.-F.; Hardacre, C. Biobutanol as fuel for direct alcohol fuel cells-investigation of Sn-modified Pt catalyst for butanol electro-oxidation. ACS Appl. Mater. Interfaces 2016, 8, 12859–12870.CrossRefGoogle Scholar
  5. [5]
    Huang, M. H.; Wu, W. L.; Wu, C. X.; Guan, L. H. Pt2SnCu nanoalloy with surface enrichment of Pt defects and SnO2 for highly efficient electrooxidation of ethanol. J. Mater. Chem. A 2015, 3, 4777–4781.CrossRefGoogle Scholar
  6. [6]
    Gnanaprakasam, P.; Jeena, S. E.; Selvaraju, T. Hierarchical electroless Pt deposition at Au decorated reduced graphene oxide via a galvanic exchanged process: An electrocatalytic nanocomposite with enhanced mass activity for methanol and ethanol oxidation. J. Mater. Chem. A 2015, 3, 18010–18018.CrossRefGoogle Scholar
  7. [7]
    Akhairi, M. A. F.; Kamarudin, S. K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energ. 2016, 41, 4214–4228.CrossRefGoogle Scholar
  8. [8]
    Kamarudin, M. Z. F.; Kamarudin, S. K.; Masdar, M. S.; Daud, W. R. W. Review: Direct ethanol fuel cells. Int. J. Hydrogen Energ. 2013, 38, 9438–9453.CrossRefGoogle Scholar
  9. [9]
    Erini, N.; Rudi, S.; Beermann, V.; Krause, P.; Yang, R. Z.; Huang, Y. H.; Strasser, P. Exceptional activity of a Pt-Rh-Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2015, 2, 903–908.CrossRefGoogle Scholar
  10. [10]
    Li, H. J.; Wu, H. X.; Zhai, Y. J.; Xu, X. L.; Jin, Y. D. Synthesis of monodisperse plasmonic Au core-Pt shell concave nanocubes with superior catalytic and electrocatalytic activity. ACS Catal. 2013, 3, 2045–2051.CrossRefGoogle Scholar
  11. [11]
    Guo, S. J.; Dong, S. J.; Wang, E. K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307–1310.CrossRefGoogle Scholar
  12. [12]
    Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.CrossRefGoogle Scholar
  13. [13]
    Zhao, T.-T.; Wang, H.; Han, X.; Jiang, K.; Lin, H. X.; Xie, Z. X.; Cai, W. B. A comparative investigation of electrocatalysis at Pt monolayers on shape-controlled Au nanocrystals: Facet effect versus strain effect. J. Mater. Chem. A 2016, 4, 15845–15850.CrossRefGoogle Scholar
  14. [14]
    de Souza, J. P. I.; Queiroz, S. L.; Bergamaski, K.; Gonzalez, E. R.; Nart, F. C. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J. Phys. Chem. B 2002, 106, 9825–9830.CrossRefGoogle Scholar
  15. [15]
    Delpeuch, A. B.; Asset, T.; Chatenet, M.; Cremers, C. Electrooxidation of ethanol at room temperature on carbonsupported Pt and Rh-containing catalysts: A DEMS study. J. Electrochem. Soc. 2014, 161, F918–F924.CrossRefGoogle Scholar
  16. [16]
    Lima, F. H. B.; Profeti, D.; Lizcano-Valbuena, W. H.; Ticianelli, E. A.; Gonzalez, E. R. Carbon-dispersed Pt–Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature. J. Electroanal. Chem. 2008, 617, 121–129.CrossRefGoogle Scholar
  17. [17]
    Bergamaski, K.; Gonzalez, E. R.; Nart, F. C. Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts. Electrochim. Acta 2008, 53, 4396–4406.CrossRefGoogle Scholar
  18. [18]
    Delpeuch, A. B.; Maillard, F.; Chatenet, M.; Soudant, P.; Cremers, C. Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Appl. Catal. B: Environ. 2016, 181, 672–680.CrossRefGoogle Scholar
  19. [19]
    Mukherjee, P.; Roy, P. S.; Bhattacharya, S. K. Improved carbonate formation from ethanol oxidation on nickel supported Pt-Rh electrode in alkaline medium at room temperature. Int. J. Hydrogen Energ. 2015, 40, 13357–13367.CrossRefGoogle Scholar
  20. [20]
    Mukherjee, P.; Bagchi, J.; Dutta, S.; Bhattacharya, S. K. The nickel supported platinum catalyst for anodic oxidation of ethanol in alkaline medium. Appl. Catal. A: Gen. 2015, 506, 220–227.CrossRefGoogle Scholar
  21. [21]
    Rizo, R.; Sebastián, D.; Lázaro, M. J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B: Environ. 2017, 200, 246–254.CrossRefGoogle Scholar
  22. [22]
    Qu, Y. T.; Gao, Y. Z.; Wang, L.; Rao, J. C.; Yin, G. P. Mild synthesis of Pt/SnO2/graphene nanocomposites with remarkably enhanced ethanol electro-oxidation activity and durability. Chem.— Eur. J. 2016, 22, 193–198.CrossRefGoogle Scholar
  23. [23]
    Mello, G. A. B.; Giz, M. J.; Chatenet, M.; Camara, G. A. The electrooxidation of acetaldehyde on platinum-rutheniumrhodium surfaces: A delicate balance between oxidation and carbon–carbon bond breaking. J. Electroanal. Chem. 2016, 765, 73–78.CrossRefGoogle Scholar
  24. [24]
    Jeon, T. Y.; Kim, S. K.; Pinna, N.; Sharma, A.; Park, J.; Lee, S. Y.; Lee, H. C.; Kang, S. W.; Lee, H. K.; Lee, H. H. Selective dissolution of surface nickel close to platinum in PtNi nanocatalyst toward oxygen reduction reaction. Chem. Mater. 2016, 28, 1879–1887.CrossRefGoogle Scholar
  25. [25]
    Li, H.-H.; Cui, C.-H.; Zhao, S.; Yao, H.-B.; Gao, M.-R.; Fan, F.-J.; Yu, S.-H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.CrossRefGoogle Scholar
  26. [26]
    Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330.CrossRefGoogle Scholar
  27. [27]
    Erini, N.; Loukrakpam, R.; Petkov, V.; Baranova, E. A.; Yang, R. Z.; Teschner, D.; Huang, Y. H.; Brankovic, S. R.; Strasser, P. Ethanol electro-oxidation on ternary platinumrhodium- tin nanocatalysts: Insights in the atomic 3D structure of the active catalytic phase. ACS Catal. 2014, 4, 1859–1867.CrossRefGoogle Scholar
  28. [28]
    Soares, L. A.; Morais, C.; Napporn, T. W.; Kokoh, K. B.; Olivi, P. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J. Power Sources 2016, 315, 47–55.CrossRefGoogle Scholar
  29. [29]
    Jiang, K. Z.; Bu, L. Z.; Wang, P. T.; Guo, S. J.; Huang, X. Q. Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2015, 7, 15061–15067.CrossRefGoogle Scholar
  30. [30]
    Yang, G. X.; Frenkel, A. I.; Su, D.; Teng, X. W. Enhanced electrokinetics of C–C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell. ChemCatChem 2016, 8, 2876–2880.CrossRefGoogle Scholar
  31. [31]
    Zhu, W.; Ke, J.; Wang, S. B.; Ren, J.; Wang, H. H.; Zhou, Z. Y.; Si, R.; Zhang, Y. W.; Yan, C. H. Shaping singlecrystalline trimetallic Pt-Pd-Rh nanocrystals toward highefficiency C–C splitting of ethanol in conversion to CO2. ACS Catal. 2015, 5, 1995–2008.CrossRefGoogle Scholar
  32. [32]
    Liu, H. M.; Liu, X. Y.; Li, Y. M.; Jia, Y. F.; Tang, Y. W.; Chen, Y. Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Res. 2016, 9, 3494–3503.CrossRefGoogle Scholar
  33. [33]
    Liu, X. Y.; Xu, G. R.; Chen, Y.; Lu, T. H.; Tang, Y. W.; Xing, W. A strategy for fabricating porous PdNi@Pt core–shell nanostructures and their enhanced activity and durability for the methanol electrooxidation. Sci. Rep. 2015, 5, 7619.CrossRefGoogle Scholar
  34. [34]
    Zhang, L.; Wan, L.; Ma, Y. R.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B: Environ. 2013, 138–139, 229–235.CrossRefGoogle Scholar
  35. [35]
    Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 2012, 22, 23659–23667.CrossRefGoogle Scholar
  36. [36]
    Vondrova, M.; McQueen, T. M.; Burgess, C. M.; Ho, D. M.; Bocarsly, A. B. Autoreduction of Pd−Co and Pt−Co cyanogels: Exploration of cyanometalate coordination chemistry at elevated temperatures. J. Am. Chem. Soc. 2008, 130, 5563–5572.CrossRefGoogle Scholar
  37. [37]
    Deshpande, R. S.; Sharp-Goldman, S. L.; Willson, J. L.; Bocarsly, A. B.; Gross, J.; Finnefrock, A. C.; Gruner, S. M. Morphology and gas adsorption properties of palladium–cobalt-based cyanogels. Chem. Mater. 2003, 15, 4239–4246.CrossRefGoogle Scholar
  38. [38]
    Burgess, C. M.; Vondrova, M.; Bocarsly, A. B. A versatile chemical method for the formation of macroporous transition metal alloys from cyanometalate coordination polymers. J. Mater. Chem. 2008, 18, 3694–3701.CrossRefGoogle Scholar
  39. [39]
    Heibel, M.; Kumar, G.; Wyse, C.; Bukovec, P.; Bocarsly, A. B. Use of sol-gel chemistry for the preparation of cyanogels as ceramic and alloy precursors. Chem. Mater. 1996, 8, 1504–1511.CrossRefGoogle Scholar
  40. [40]
    Pfennig, B. W.; Bocarsly, A. B.; Prud’homme, R. K. Synthesis of a novel hydrogel based on a coordinate covalent polymer network. J. Am. Chem. Soc. 1993, 115, 2661–2665.CrossRefGoogle Scholar
  41. [41]
    Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1992.Google Scholar
  42. [42]
    Wang, L. L.; Zhang, D. F.; Guo, L. Phase-segregated Pt-Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale 2014, 6, 4635–4641.CrossRefGoogle Scholar
  43. [43]
    Zhang, J. F.; Li, K. D.; Zhang, B. Synthesis of dendritic Pt–Ni–P alloy nanoparticles with enhanced electrocatalytic properties. Chem. Commun. 2015, 51, 12012–12015.CrossRefGoogle Scholar
  44. [44]
    Zhang, J. F.; Xu, Y.; Zhang, B. Facile synthesis of 3D Pd–P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chem. Commun. 2014, 50, 13451–13453.CrossRefGoogle Scholar
  45. [45]
    Ma, J. W.; Wang, J.; Zhang, G. H.; Fan, X. B.; Zhang, G. L.; Zhang, F. B.; Li, Y. Deoxyribonucleic acid-directed growth of well dispersed nickel-palladium-platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation. J. Power Sources 2015, 278, 43–49.CrossRefGoogle Scholar
  46. [46]
    Delpeuch, A. B.; Asset, T.; Chatenet, M.; Cremers, C. Influence of the temperature for the ethanol oxidation reaction (EOR) on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C. Fuel Cells 2015, 15, 352–360.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and EngineeringShaanxi Normal UniversityXi’anChina
  2. 2.Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina
  3. 3.A key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)WuhanChina
  4. 4.Shenzhen Institute of Huazhong University of Science and TechnologyShenzhenChina

Personalised recommendations