Nano Research

, Volume 10, Issue 10, pp 3314–3323 | Cite as

Promising electroplating solution for facile fabrication of Cu quantum point contacts

Research Article


In this article, we report on the fabrication and transport measurements of Cu quantum point contacts prepared by a novel, electrochemically assisted mechanically controllable break junction (EC-MCBJ) method. By employing photolithography and wet-etching processes, suspended electrode pairs were patterned and fabricated successfully on Si microchips. Rather than adopting an acid Cu electroplating solution, a novel alkaline electroplating solution was developed and utilized to establish Cu nanocontacts between electrode pairs. Typically, the widths of the as-fabricated Cu nanocontacts were found to be smaller than 18 nm. A large number of Cu quantum point contacts were then produced and characterized by a home-built MCBJ setup. In addition to the conventional histogram, where peaks tend to decrease in amplitude with increasing conductance, an anomalous type of conductance histogram, exhibiting different peak amplitudes, was observed. Through statistical analysis of the maximum allowable bending of the Si microchips, and theoretical calculations, we demonstrated that our alkaline Cu electroplating solution affords Cu nanocontacts that are compatible with subsequent MCBJ operations, which is essential for the fabrication of Cu quantum point contacts. As sophisticated e-beam lithography is not required, the EC-MCBJ method is fast, simple, and cost-effective. Moreover, it is likely to be suitable for the fabrication and characterization of quantum point contacts of various metals from their respective electroplating solutions.


quantum point contact electrochemical deposition Cu nanowire mechanically controllable break junction (MCBJ) conductance quantization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 21503179, 21403181, 61573295, 21522508, 21673195, 21533006, and 61071010), the National Basic Research Program of China (No. 2015CB932300), the Natural Science Foundation of Fujian Province (No. 2016J05162), the Fundamental Research Funds for the Central Universities in China (Xiamen University, Nos. 20720170035 and 20720160092), and the Young Thousand Talent Project of China.

Supplementary material

12274_2017_1544_MOESM1_ESM.pdf (1.2 mb)
Promising electroplating solution for facile fabrication of Cu quantum point contacts


  1. [1]
    Agraït, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.CrossRefGoogle Scholar
  2. [2]
    Fuechsle, M.; Miwa, J. A.; Mahapatra, S.; Ryu, H.; Lee, S.; Warschkow, O.; Hollenberg, L. C. L.; Klimeck, G.; Simmons, M. Y. A single-atom transistor. Nat. Nanotechnol. 2012, 7, 242–246.CrossRefGoogle Scholar
  3. [3]
    Schirm, C.; Matt, M.; Pauly, F.; Cuevas, J. C.; Nielaba, P.; Scheer, E. A current-driven single-atom memory. Nat. Nanotechnol. 2013, 8, 645–648.CrossRefGoogle Scholar
  4. [4]
    Zhou, Y. S.; Li, S. M.; Niu, S. M.; Wang, Z. L. Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 2016, 9, 3705–3713.CrossRefGoogle Scholar
  5. [5]
    Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.CrossRefGoogle Scholar
  6. [6]
    Hybertsen, M. S.; Venkataraman, L. Structure–property relationships in atomic-scale junctions: Histograms and beyond. Acc. Chem. Res. 2016, 49, 452–460.CrossRefGoogle Scholar
  7. [7]
    Olesen, L.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F.; Schiøtz, J.; Stoltze, P.; Jacobsen, K. W.; Nørskov, J. K. Quantized conductance in an atom-sized point contact. Phys. Rev. Lett. 1994, 72, 2251–2254.CrossRefGoogle Scholar
  8. [8]
    Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.CrossRefGoogle Scholar
  9. [9]
    Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.CrossRefGoogle Scholar
  10. [10]
    Xiang, A.; Li, H.; Chen, S. J.; Liu, S.-X.; Decurtins, S.; Bai, M. L.; Hou, S. M.; Liao, J. H. Electronic transport in benzodifuran single-molecule transistors. Nanoscale 2015, 7, 7665–7673.CrossRefGoogle Scholar
  11. [11]
    Li, C. Z.; He, H. X.; Tao, N. J. Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching. Appl. Phys. Lett. 2000, 77, 3995–3997.CrossRefGoogle Scholar
  12. [12]
    Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Reproducible measurement of single-molecule conductivity. Science 2001, 294, 571–574.CrossRefGoogle Scholar
  13. [13]
    Hamill, J. M.; Wang, K.; Xu, B. Q. Force and conductance molecular break junctions with time series crosscorrelation. Nanoscale 2014, 6, 5657–5661.CrossRefGoogle Scholar
  14. [14]
    Moreland, J.; Ekin, J. W. Electron tunneling experiments using Nb-Sn “break” junctions. J. Appl. Phys. 1985, 58, 3888–3895.CrossRefGoogle Scholar
  15. [15]
    Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.CrossRefGoogle Scholar
  16. [16]
    Zhou, C.; Muller, C. J.; Deshpande, M. R.; Sleight, J. W.; Reed, M. A. Microfabrication of a mechanically controllable break junction in silicon. Appl. Phys. Lett. 1995, 67, 1160–1162.CrossRefGoogle Scholar
  17. [17]
    Martin, C. A.; Ding, D. P.; van der Zant, H. S. J.; van Ruitenbeek, J. M. Lithographic mechanical break junctions for single-molecule measurements in vacuum: Possibilities and limitations. New J. Phys. 2008, 10, 065008.CrossRefGoogle Scholar
  18. [18]
    Huisman, E. H.; Trouwborst, M. L.; Bakker, F. L.; de Boer, B.; van Wees, B. J.; van der Molen, S. J. Stabilizing single atom contacts by molecular bridge formation. Nano Lett. 2008, 8, 3381–3385.CrossRefGoogle Scholar
  19. [19]
    González, M. T.; Wu, S. M.; Huber, R.; van der Molen, S. J.; Schönenberger, C.; Calame, M. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 2006, 6, 2238–2242.CrossRefGoogle Scholar
  20. [20]
    Muller, C. J.; de Bruyn Ouboter, R. Fabrication of inherently stable and adjustable contacts of atomic size. J. Appl. Phys. 1995, 77, 5231–5236.CrossRefGoogle Scholar
  21. [21]
    Tian, J.-H.; Liu, B.; Li, X. L.; Yang, Z.-L.; Ren, B.; Wu, S.-T.; Tao, N. J.; Tian, Z.-Q. Study of molecular junctions with a combined surface-enhanced raman and mechanically controllable break junction method. J. Am. Chem. Soc. 2006, 128, 14748–14749.CrossRefGoogle Scholar
  22. [22]
    Li, X. L.; Hua, S. Z.; Chopra, H. D.; Tao, N. J. Formation of atomic point contacts and molecular junctions with a combined mechanical break junction and electrodeposition method. Micro. Nano. Lett. 2006, 1, 83–88.CrossRefGoogle Scholar
  23. [23]
    Yang, Y.; Liu, J.-Y.; Chen, Z.-B.; Tian, J.-H.; Jin, X.; Liu, B.; Li, X. L.; Luo, Z.-Z.; Lu, M.; Yang, F.-Z. et al. Conductance histogram evolution of an EC–MCBJ fabricated Au atomic point contact. Nanotechnology 2011, 22, 275313.CrossRefGoogle Scholar
  24. [24]
    Yang, Y.; Liu, J. Y.; Feng, S.; Wen, H. M.; Tian, J. H.; Zheng, J. T.; Schöllhorn, B.; Amatore, C.; Chen, Z. N.; Tian, Z. Q. Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted–MCBJ. Nano Res. 2016, 9, 560–570.CrossRefGoogle Scholar
  25. [25]
    Zheng, J.-T.; Yan, R.-W.; Tian, J.-H.; Liu, J.-Y.; Pei, L.-Q.; Wu, D.-Y.; Dai, K.; Yang, Y.; Jin, S.; Hong, W. J. et al. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo (phenylene ethynylene)s molecular junctions. Electrochim. Acta 2016, 200, 268–275.CrossRefGoogle Scholar
  26. [26]
    Krans, J. M.; van Ruitenbeek, J. M.; Fisun, V. V.; Yanson, I. K.; de Jongh, L. J. The signature of conductance quantization in metallic point contacts. Nature 1995, 375, 767–769.CrossRefGoogle Scholar
  27. [27]
    González, J. C.; Rodrigues, V.; Bettini, J.; Rego, L. G. C.; Rocha, A. R.; Coura, P. Z.; Dantas, S. O.; Sato, F.; Galvão, D. S.; Ugarte, D. Indication of unusual pentagonal structures in atomic-size Cu nanowires. Phys. Rev. Lett. 2004, 93, 126103.CrossRefGoogle Scholar
  28. [28]
    Costa-Krämer, J. L.; Díaz, M.; Serena, P. A. Magnetic field effects on total and partial conductance histograms in Cu and Ni nanowires. Appl. Phys. A 2005, 81, 1539–1543.CrossRefGoogle Scholar
  29. [29]
    Kiguchi, M.; Konishi, T.; Miura, S.; Murakoshi, K. The effect of hydrogen evolution reaction on conductance quantization of Au, Ag, Cu nanocontacts. Nanotechnology 2007, 18, 424011.CrossRefGoogle Scholar
  30. [30]
    Zhou, X. S.; Wei, Y. M.; Liu, L.; Chen, Z. B.; Tang, J.; Mao, B. W. Extending the capability of STM break junction for conductance measurement of atomic-size nanowires: An electrochemical strategy. J. Am. Chem. Soc. 2008, 130, 13228–13230.CrossRefGoogle Scholar
  31. [31]
    Li, C. Z.; Tao, N. J. Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 1998, 72, 894–896.CrossRefGoogle Scholar
  32. [32]
    Li, C. Z.; Bogozi, A.; Huang, W.; Tao, N. J. Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 1999, 10, 221–223.CrossRefGoogle Scholar
  33. [33]
    Miura, S.; Kiguchi, M.; Murakoshi, K. Formation of stable nanowires from ferromagnetic metals using 2-butyne-1, 4-diol. Surf. Sci. 2007, 601, 287–291.CrossRefGoogle Scholar
  34. [34]
    Mészáros, G.; Kronholz, S.; Karthäuser, S.; Mayer, D.; Wandlowski, T. Electrochemical fabrication and characterization of nanocontacts and nm-sized gaps. Appl. Phys. A 2007, 87, 569–575.CrossRefGoogle Scholar
  35. [35]
    Zhou, X. Y.; Peng, Z. L.; Sun, Y. Y.; Wang, L. N.; Niu, Z. J.; Zhou, X. S. Conductance measurement of pyridyl-based single molecule junctions with Cu and Au contacts. Nanotechnology 2013, 24, 465204.CrossRefGoogle Scholar
  36. [36]
    Xu, J. Y.; Yang, F. Z.; Xie, Z. X.; Zhou, S. M. The investigation of the effect of Cl–ions on copper plating in acids baths. J. Xiamen Univ. (Nat. Sci.) 1994, 33, 647–651.Google Scholar
  37. [37]
    Gu, M.; Yang, F. Z.; Huang, L.; Yao, S. B.; Zhou, S. M. Effect of chloride ion on electrocrystallization of copper on glass carbon electrode. Acta Chim. Sinica 2002, 60, 1946–1950.Google Scholar
  38. [38]
    Liu, B.; Xiang, J.; Tian, J.-H.; Zhong, C.; Mao, B.-W.; Yang, F.-Z.; Chen, Z.-B.; Wu, S.-T.; Tian, Z.-Q. Controllable nanogap fabrication on microchip by chronopotentiometry. Electrochim. Acta 2005, 50, 3041–3047.CrossRefGoogle Scholar
  39. [39]
    Cui, Z. X.; Xue, Y. Q.; Li, B.; Li, P. Effect of particle size of nano-copper on the solubility in dilute sulphuric acid solution. Chem. Ind. Eng. Prog. 2012, 31, 1290–1292, 1297.Google Scholar
  40. [40]
    van Ruitenbeek, J. M.; Alvarez, A.; Piñeyro, I.; Grahmann, C.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum. 1996, 67, 108–111.CrossRefGoogle Scholar
  41. [41]
    Vrouwe, S. A. G.; van der Giessen, E.; van der Molen, S. J.; Dulic, D.; Trouwborst, M. L.; van Wees, B. J. Mechanics of lithographically defined break junctions. Phys. Rev. B 2005, 71, 035313.CrossRefGoogle Scholar
  42. [42]
    Wang, F. Y.; Gao, Y. J.; Zhu, T. M.; Zhao, J. W. Shockinduced breaking in the gold nanowire with the influence of defects and strain rates. Nanoscale 2011, 3, 1624–1631.CrossRefGoogle Scholar
  43. [43]
    Yang, Y.; Chen, Z. B.; Liu, J. Y.; Lu, M.; Yang, D. Z.; Yang, F. Z.; Tian, Z. Q. An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Res. 2011, 4, 1199–1207.CrossRefGoogle Scholar
  44. [44]
    Kaneko, S.; Nakamura, Y.; Zhang, J. J.; Yang, X. B.; Zhao, J. W.; Kiguchi, M. Formation of single Cu atomic chain in nitrogen atmosphere. J. Phys. Chem. C 2015, 119, 862–866.CrossRefGoogle Scholar
  45. [45]
    Rodrigues, V.; Bettini, J.; Rocha, A. R.; Rego, L. G. C.; Ugarte, D. Quantum conductance in silver nanowires: Correlation between atomic structure and transport properties. Phys. Rev. B 2002, 65, 153402.CrossRefGoogle Scholar
  46. [46]
    García-Mochales, P.; Paredes, R.; Peláez, S.; Serena, P. A. Statistical analysis of the breaking processes of Ni nanowires. Nanotechnology 2008, 19, 225704.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yang Yang
    • 1
  • Junyang Liu
    • 1
  • Jueting Zheng
    • 1
  • Miao Lu
    • 1
  • Jia Shi
    • 1
  • Wenjing Hong
    • 1
  • Fangzu Yang
    • 1
  • Zhongqun Tian
    • 1
  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, LIA CNRS NanoBioCatEchem, Collaborative Innovation Center of Chemistry for Energy MaterialsXiamen UniversityXiamenChina

Personalised recommendations