Nano Research

, Volume 10, Issue 10, pp 3303–3313 | Cite as

An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties

  • Chao Lian
  • Zhuo Wang
  • Rui Lin
  • Dingsheng Wang
  • Chen Chen
  • Yadong Li
Research Article


An efficient, controllable, and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed. A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm. The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, nitrogen adsorption measurements, and transmission electron microscopy. The results show that GO can be reduced to graphene during the ethanothermal process, and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process. The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances. Among all samples, Fe3O4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g, highlighting the excellent capability of this material. This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.


graphene Fe3O4 nanocomposite supercapacitor electrochemical capacitance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 21521091, 21390393, U1463202, 21573119, and 21590792), the National Key Research and Development Program of China (No. 2016YFA0202801) and Fundamental Research Funds for the Central Universities (No. 2015RC070).


  1. [1]
    Wang, Y. F.; Yang, X. W.; Qiu, L.; Li, D. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: The importance of nano-architecturing. Energy Environ. Sci. 2013, 6, 477–481.CrossRefGoogle Scholar
  2. [2]
    Cao, X. H.; Zheng, B.; Shi, W. H.; Yang, J.; Fan, Z. X.; Luo, Z. M.; Rui, X. H.; Chen, B.; Yan, Q. Y.; Zhang, H. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 2015, 27, 4695–4701.CrossRefGoogle Scholar
  3. [3]
    Liu, L. B.; Yu, Y.; Yan, C.; Li K.; Zheng, Z. J. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 2015, 6, 7260.CrossRefGoogle Scholar
  4. [4]
    Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109–2116.CrossRefGoogle Scholar
  5. [5]
    Lin, Y.; Han, X. G.; Campbell, C. J.; Kim, J. W.; Zhao, B.; Luo, W.; Dai, J. Q.; Hu, L. B.; Connell, J. W. Holey graphene nanomanufacturing: Structure, composition, and electrochemical properties. Adv. Funct. Mater. 2015, 25, 2920–2927.CrossRefGoogle Scholar
  6. [6]
    Jin, H. L.; Huang, H. H.; He, Y. H.; Feng, X.; Wang, S.; Dai, L. M.; Wang, J. C. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 7588–7591.CrossRefGoogle Scholar
  7. [7]
    Ping, J. F.; Wang, Y. X.; Lu, Q. P.; Chen, B.; Chen, J. Z.; Huang, Y.; Ma, Q. L.; Tan, C. L.; Yang, J.; Cao, X. H. et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Adv. Mater. 2016, 28, 7640–7645.CrossRefGoogle Scholar
  8. [8]
    Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 2016, 7, 11954.CrossRefGoogle Scholar
  9. [9]
    Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1–xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia–borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.CrossRefGoogle Scholar
  10. [10]
    Guo, S. J.; Wen, D.; Zhai, Y. M.; Dong, S. J.; Wang, E. K. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4, 3959–3968.CrossRefGoogle Scholar
  11. [11]
    Cao, A. N.; Liu, Z.; Chu, S. S.; Wu, M. H.; Ye, Z. M.; Cai, Z. W.; Chang, Y. L.; Wang, S. F.; Gong, Q. H.; Liu, Y. F. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.CrossRefGoogle Scholar
  12. [12]
    Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252–4254.CrossRefGoogle Scholar
  13. [13]
    Liang, J. F.; Wei, W.; Zhong, D.; Yang, Q. L.; Li, L. D.; Guo, L. One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 454–459.CrossRefGoogle Scholar
  14. [14]
    Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852–5855.CrossRefGoogle Scholar
  15. [15]
    Zhu, J. X.; Zhu, T.; Zhou, X. Z.; Zhang, Y. Y.; Lou, X. W.; Chen, X. D.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 2011, 3, 1084–1089.CrossRefGoogle Scholar
  16. [16]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefGoogle Scholar
  17. [17]
    Cai, L. L.; Rao, P. M.; Zheng, X. L. Morphology-controlled flame synthesis of single, branched, and flower-like α-MoO3 nanobelt arrays. Nano Lett. 2011, 11, 872–877.CrossRefGoogle Scholar
  18. [18]
    Li, W. H.; Zamani, R.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Morante, J. R.; Arbiol, J.; Cabot, A. Metal ions to control the morphology of semiconductor nanoparticles: Copper selenide nanocubes. J. Am. Chem. Soc. 2013, 135, 4664–4667.CrossRefGoogle Scholar
  19. [19]
    Susman, M. D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 2014, 8, 162–174.CrossRefGoogle Scholar
  20. [20]
    Zhong, Y.; Wang, J. F.; Zhang, R. F.; Wei, W. B.; Wang, H. M.; Lü, X. P.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals. Nano Lett. 2014, 14, 7175–7179.CrossRefGoogle Scholar
  21. [21]
    Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.CrossRefGoogle Scholar
  22. [22]
    Si, Y. C.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.CrossRefGoogle Scholar
  23. [23]
    Wu, Z. S.; Ren, W. C.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Liu, B. L.; Tang, D. M.; Yu, B.; Jiang, C. B.; Cheng, H. M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3, 411–417.CrossRefGoogle Scholar
  24. [24]
    Ai, K. L.; Liu, Y. L.; Lu, L. H.; Cheng, X. L.; Huo, L. H. A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem. 2011, 21, 3365–3370.CrossRefGoogle Scholar
  25. [25]
    Chang, J.; Xu, H.; Sun, J.; Gao, L. High pseudocapacitance material prepared via in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. J. Mater. Chem. 2012, 22, 11146–11150.CrossRefGoogle Scholar
  26. [26]
    Zu, S. Z.; Han, B. H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: Formation of supramolecular hydrogel. J. Phys. Chem. C 2009, 113, 13651–13657.CrossRefGoogle Scholar
  27. [27]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  28. [28]
    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.CrossRefGoogle Scholar
  29. [29]
    Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.CrossRefGoogle Scholar
  30. [30]
    Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.CrossRefGoogle Scholar
  31. [31]
    Pré, P.; Huchet, G.; Jeulin, D.; Rouzaud, J. N.; Sennour, M.; Thorel, A. A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images. Carbon 2013, 52, 239–258.CrossRefGoogle Scholar
  32. [32]
    Wang, B. Y.; Chen, W.; Fu, H. Y.; Qu, X. L.; Zheng, S. R.; Xu, Z. Y.; Zhu, D. Q. Comparison of adsorption isotherms of single-ringed compounds between carbon nanomaterials and porous carbonaceous materials over six-order-of-magnitude concentration range. Carbon 2014, 79, 203–212.CrossRefGoogle Scholar
  33. [33]
    Zhou, D.; Cui, Y.; Xiao, P. W.; Jiang, M. Y.; Han, B. H. A general and scalable synthesis approach to porous graphene. Nat. Commun. 2014, 5, 4716.CrossRefGoogle Scholar
  34. [34]
    Wang, C. A.; Watson, J. K.; Louw, E.; Mathews, J. P. Construction strategy for atomistic models of coal chars capturing stacking diversity and pore size distribution. Energy Fuels 2015, 29, 4814–4826.CrossRefGoogle Scholar
  35. [35]
    Liu, D. Q.; Jia, Z.; Zhu, J. X.; Wang, D. L. A regular, compact but microporous packing structure: High-density graphene assemblies for high-volumetric-performance supercapacitors. J. Mater. Chem. A 2015, 3, 12653–12662.CrossRefGoogle Scholar
  36. [36]
    Geng, T.; Zhang, L.; Wang, H. Y.; Zhang, K. Y.; Zhou, X. Facile synthesis of porous Co3O4 nanoplates for supercapacitor applications. Bull. Mater. Sci. 2015, 38, 1171–1175.CrossRefGoogle Scholar
  37. [37]
    Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.CrossRefGoogle Scholar
  38. [38]
    Lu, Z. Y.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J. F.; Sun, X. M.; Evans, D. G.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369–378.CrossRefGoogle Scholar
  39. [39]
    Lee, J. W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164.CrossRefGoogle Scholar
  40. [40]
    Yilmaz, G.; Guo, C. X.; Lu, X. M. High-performance solid-state supercapacitors based on V2O5/carbon nanotube composites. ChemElectroChem 2016, 3, 158–164.CrossRefGoogle Scholar
  41. [41]
    Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.CrossRefGoogle Scholar
  42. [42]
    Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power. Sources 2014, 245, 101–106.CrossRefGoogle Scholar
  43. [43]
    Li, L.; Gao, P.; Gai, S. L.; He, F.; Chen, Y. J.; Zhang, M. L.; Yang, P. P. Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim. Acta 2016, 190, 566–573.CrossRefGoogle Scholar
  44. [44]
    Liu, T. Z.; Zhang, X. D.; Li, B. J.; Ding, J.; Liu, Y. S.; Li, G.; Meng, X. H.; Cai, Q.; Zhang, J. M. Fabrication of quasi-cubic Fe3O4@rGO composite via a colloid electrostatic self-assembly process for supercapacitors. RSC Adv. 2014, 4, 50765–50770.CrossRefGoogle Scholar
  45. [45]
    Senthilkumar, S. T.; Selvan, R. K.; Lee, Y. S.; Melo, J. S. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 2013, 1, 1086–1095.CrossRefGoogle Scholar
  46. [46]
    Niu, H.; Zhou, D.; Yang, X.; Li, X.; Wang, Q.; Qu, F. Y. Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core–shell heterostructures for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 18413–18421.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chao Lian
    • 1
    • 2
  • Zhuo Wang
    • 2
    • 3
  • Rui Lin
    • 2
  • Dingsheng Wang
    • 2
  • Chen Chen
    • 2
  • Yadong Li
    • 2
  1. 1.Department of Chemistry, School of ScienceBeijing Jiaotong UniversityBeijingChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina
  3. 3.Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations