Nano Research

, Volume 10, Issue 10, pp 3295–3302 | Cite as

Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nano-crossbar memory array

Research Article


Crossbar array provides a cost-effective approach for achieving high-density integration of two-terminal functional devices. However, the “sneaking current problem”, which can lead to read failure, is a severe challenge in crossbar arrays. To inhibit the sneaking current from unselected cells, the integration of individual selection devices is necessary. In this work, we report a novel TaO x -based selector exhibiting a trapezoidal band structure formed by tuning the concentration of defects in the oxide. Salient features such as a high current density (1 MA·cm–2), high selectivity (5 × 104), low off-state current (~10 pA), robust endurance (>1010), self-compliance, and excellent uniformity were successfully achieved. The integrated one-selector one-resistor (1S1R) device exhibits high nonlinearity in the low resistance state (LRS), which is quite effective in solving the sneaking current issue.


crossbar array selector trapezoidal barrier gradient oxygen concentration high uniformity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0203800 and 2016YFA0201803) and the National Natural Science Foundation of China (No. 61522408).

Supplementary material

12274_2017_1542_MOESM1_ESM.pdf (1.6 mb)
Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nano-crossbar memory array


  1. [1]
    Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.CrossRefGoogle Scholar
  2. [2]
    Yu, S. M.; Chen, H. Y.; Gao, B.; Kang, J. F.; Wong, H. S. P. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.CrossRefGoogle Scholar
  3. [3]
    Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.CrossRefGoogle Scholar
  4. [4]
    Xia, Q. F.; Yang, J. J.; Wu, W.; Li, X. M.; Williams, R. S. Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 2010, 10, 2909–2914.CrossRefGoogle Scholar
  5. [5]
    Tian, X. Z.; Wang, L. F.; Wei, J. K.; Yang, S. Z.; Wang, W. L.; Xu, Z.; Bai, X. D. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 2014, 7, 1065–1072.CrossRefGoogle Scholar
  6. [6]
    Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Shen, Y. W.; Zhang, Y. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor. Nano Res. 2016, 9, 1116–1124.CrossRefGoogle Scholar
  7. [7]
    Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D. J.; Li, X. M.; Zeng, H. B. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584–1594.CrossRefGoogle Scholar
  8. [8]
    Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.CrossRefGoogle Scholar
  9. [9]
    Xia, Q. F.; Robinett, W.; Cumbie, M. W.; Banerjee, N.; Cardinali, T. J.; Yang, J. J.; Wu, W.; Li, X. M.; Tong, W. M.; Strukov, D. B. et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 2009, 9, 3640–3645.CrossRefGoogle Scholar
  10. [10]
    Cassinerio, M.; Ciocchini, N.; Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 2013, 25, 5975–5980.CrossRefGoogle Scholar
  11. [11]
    Huang, P.; Kang, J.; Zhao, Y.; Chen, S.; Han, R.; Zhou, Z.; Chen, Z.; Ma, W.; Li, M.; Liu, L.; Liu, X. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv. Mater. 2016, 28, 9758–9764.CrossRefGoogle Scholar
  12. [12]
    Adam, G. C.; Hoskins, B. D.; Prezioso, M.; Strukov, D. B. Optimized stateful material implication logic for threedimensional data manipulation. Nano Res. 2016, 9, 3914–3923.CrossRefGoogle Scholar
  13. [13]
    Lee, T. H.; Loke, D.; Huang, K. J.; Wang, W. J.; Elliott, S. R. Tailoring transient-amorphous states: Towards fast and power-efficient phase-change memory and neuromorphic computing. Adv. Mater. 2014, 26, 7493–7498.CrossRefGoogle Scholar
  14. [14]
    Yu, S. M.; Gao, B.; Fang, Z.; Yu, H. Y.; Kang, J. F.; Wong, H. S. P. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 2013, 25, 1774–1779.CrossRefGoogle Scholar
  15. [15]
    Gao, B.; Bi, Y. J.; Chen, H. Y.; Liu, R.; Huang, P.; Chen, B.; Liu, L. F.; Liu, X. Y.; Yu, S. M.; Wong, H. S. P. et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano 2014, 8, 6998–7004.CrossRefGoogle Scholar
  16. [16]
    Wang, Z. R.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.CrossRefGoogle Scholar
  17. [17]
    Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.CrossRefGoogle Scholar
  18. [18]
    Krishnan, K.; Tsuruoka, T.; Mannequin, C.; Aono, M. Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv. Mater. 2016, 28, 640–648.CrossRefGoogle Scholar
  19. [19]
    Simpson, R. E.; Fons, P.; Kolobov, A. V.; Fukaya, T.; Krbal, M.; Yagi, T.; Tominaga, J. Interfacial phase-change memory. Nat. Nanotechnol. 2011, 6, 501–505.CrossRefGoogle Scholar
  20. [20]
    Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat. Mater. 2008, 7, 399–405.CrossRefGoogle Scholar
  21. [21]
    Sankey, J. C.; Cui, Y.-T.; Sun, J. Z.; Slonczewski, J. C.; Buhrman, R. A.; Ralph, D. C. Measurement of the spintransfer- torque vector in magnetic tunnel junctions. Nat. Phys. 2008, 4, 67–71.CrossRefGoogle Scholar
  22. [22]
    Liu, L. Q.; Pai, C.-F.; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. Spin-torque switching with the giant spin hall effect of tantalum. Science 2012, 336, 555–558.CrossRefGoogle Scholar
  23. [23]
    Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011, 332, 568–570.CrossRefGoogle Scholar
  24. [24]
    Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat. Mater. 2005, 4, 663–666.CrossRefGoogle Scholar
  25. [25]
    Jiang, A. Q.; Wang, C.; Jin, K. J.; Liu, X. B.; Scott, J. F.; Hwang, C. S.; Tang, T. A.; Lu, H. B.; Yang, G. Z. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 2011, 23, 1277–1281.Google Scholar
  26. [26]
    Luo, Q.; Xu, X. X.; Liu, H. T.; Lv, H. B.; Gong, T. C.; Long, S. B.; Liu, Q.; Sun, H. T.; Banerjee, W.; Li, L. et al. Cu BEOL compatible selector with high selectivity (>107), extremely low off-current (∼pA) and high endurance (>1010). In 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp 10.4.1–10.4.4.Google Scholar
  27. [27]
    Gopalakrishnan, K.; Shenoy, R. S.; Rettner, C. T.; Virwani, K.; Bethune, D. S.; Shelby, R. M.; Burr, G. W.; Kellock, A.; King, R. S.; Nguyen, K. et al. Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays. In 2010 Symposium on VLSI Technology, Honolulu, 2010, pp 205–206.Google Scholar
  28. [28]
    Son, M.; Lee, J.; Park, J.; Shin, J.; Choi, G.; Jung, S.; Lee, W.; Kim, S.; Park, S.; Hwang, H. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 2011, 32, 1579–1581.CrossRefGoogle Scholar
  29. [29]
    Kim, S.; Liu, X. J.; Park, J.; Jung, S.; Lee, W.; Woo, J.; Shin, J.; Choi, G.; Cho, C.; Park, S. et al. Ultrathin (<10 nm) Nb2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. In 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, 2012, pp 155–156.Google Scholar
  30. [30]
    Huang, J.-J.; Tseng, Y.-M.; Hsu, C.-W.; Hou, T.-H. Bipolar Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 2011, 32, 1427–1429.CrossRefGoogle Scholar
  31. [31]
    Lee, W.; Park, J.; Kim, S.; Woo, J.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Cha, E.; Lee, B. H. et al. High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector–one resistor arrays. ACS Nano 2012, 6, 8166–8172.CrossRefGoogle Scholar
  32. [32]
    Likharev, K. K. Layered tunnel barriers for nonvolatile memory devices. Appl. Phys. Lett. 1998, 73, 2137–2139.CrossRefGoogle Scholar
  33. [33]
    Allyn, C. L.; Gossard, A. C.; Wiegmann, W. New rectifying semiconductor structure by molecular beam epitaxy. Appl. Phys. Lett. 1980, 36, 373–376.CrossRefGoogle Scholar
  34. [34]
    Malik, R. J.; Aucoin, T. R.; Ross, R. L.; Board, K.; Wood, C. E. C.; Eastman, L. F. Planar-doped barriers in GaAs by molecular beam epitaxy. Electron. Lett. 1980, 16, 836–838.CrossRefGoogle Scholar
  35. [35]
    Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590.CrossRefGoogle Scholar
  36. [36]
    Simmons, J. G. Potential barriers and emission-limited current flow between closely spaced parallel metal electrodes. J. Appl. Phys. 1964, 35, 2472–2481.CrossRefGoogle Scholar
  37. [37]
    Xu, X. X.; Lv, H. B.; Li, Y. X.; Liu, H. T.; Wang, M.; Liu, Q.; Long, S. B.; Liu, M. Degradation of gate voltage controlled multilevel storage in one transistor one resistor electrochemical metallization cell. IEEE Electron Device Lett. 2015, 36, 555–557.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Qing Luo
    • 1
    • 2
  • Xiaoxin Xu
    • 1
    • 2
  • Hangbing Lv
    • 1
    • 2
    • 3
  • Tiancheng Gong
    • 1
    • 2
  • Shibing Long
    • 1
    • 2
  • Qi Liu
    • 1
    • 2
  • Ling Li
    • 1
    • 2
  • Ming Liu
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)NanjingChina

Personalised recommendations