Nano Research

, Volume 10, Issue 9, pp 3202–3211 | Cite as

FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries

Research Article


Sodium-ion batteries (SIBs) have great promise for sustainable and economical energy-storage applications. Nevertheless, it is a major challenge to develop anode materials with high capacity, high rate capability, and excellent cycling stability for them. In this study, FeSe2 clusters consisting of nanorods were synthesized by a facile hydrothermal method, and their sodium-storage properties were investigated with different electrolytes. The FeSe2 clusters delivered high electrochemical performance with an ether-based electrolyte in a voltage range of 0.5–2.9 V. A high discharge capacity of 515 mAh·g–1 was obtained after 400 cycles at 1 A·g–1, with a high initial columbic efficiency of 97.4%. Even at an ultrahigh rate of 35 A·g–1, a specific capacity of 128 mAh·g–1 was achieved. Using calculations, we revealed that the pseudocapacitance significantly contributed to the sodium-ion storage, especially at high current rates, leading to a high rate capability. The high comprehensive performance of the FeSe2 clusters makes them a promising anode material for SIBs.


FeSe2 clusters superior rate capability excellent cycling stability sodium-ion batteries pseudocapacitive behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Natural Science Foundation of China (Nos. 51425204 and 51602239), the Hubei Provincial Natural Science Foundation of China (No. 2016CFB267), the Fundamental Research Funds for the Central Universities (Nos. 2016IVA090 and 2017III005), the Natural Science Foundation of Henan Province (Nos. 152300410114 and 14B140009), the China Postdoctoral Science Foundation (No. 2016M592401). L. Q. M. gratefully acknowledged financial support from China Scholarship Council (No. 201606955096).

Supplementary material

12274_2017_1537_MOESM1_ESM.pdf (1.7 mb)
FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries


  1. [1]
    Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 2013, 7, 10307–10318.CrossRefGoogle Scholar
  2. [2]
    Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133.CrossRefGoogle Scholar
  3. [3]
    Wu, C.; Maier, J.; Yu, Y. Sn-based nanoparticles encapsulated in a porous 3D graphene network: Advanced anodes for high-rate and long life Li-ion batteries. Adv. Funct. Mater. 2015, 25, 3488–3496.CrossRefGoogle Scholar
  4. [4]
    Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119–4124.CrossRefGoogle Scholar
  5. [5]
    Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.CrossRefGoogle Scholar
  6. [6]
    Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  7. [7]
    Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.CrossRefGoogle Scholar
  8. [8]
    Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.CrossRefGoogle Scholar
  9. [9]
    Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139–4144.CrossRefGoogle Scholar
  10. [10]
    Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhu, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.CrossRefGoogle Scholar
  11. [11]
    Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.CrossRefGoogle Scholar
  12. [12]
    Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.CrossRefGoogle Scholar
  13. [13]
    Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444–450.CrossRefGoogle Scholar
  14. [14]
    Dong, Y. F.; Li, S.; Zhao, K. N.; Han, C. H.; Chen, W.; Wang, B. L.; Wang, L.; Xu, B. A.; Wei, Q. L.; Zhang, L. et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy Environ. Sci. 2015, 8, 1267–1275.CrossRefGoogle Scholar
  15. [15]
    Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.CrossRefGoogle Scholar
  16. [16]
    You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.CrossRefGoogle Scholar
  17. [17]
    Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.CrossRefGoogle Scholar
  18. [18]
    Zhao, J.; Zhao, L. W.; Chihara, K.; Okada, S.; Yamaki, J. I.; Matsumoto, S.; Kuze, S.; Nakane, K. Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries. J. Power Sources 2013, 244, 752–757.CrossRefGoogle Scholar
  19. [19]
    Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028.CrossRefGoogle Scholar
  20. [20]
    Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacin, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583.CrossRefGoogle Scholar
  21. [21]
    Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.CrossRefGoogle Scholar
  22. [22]
    Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as highperformance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.CrossRefGoogle Scholar
  23. [23]
    Abel, P. R.; Lin, Y. M.; de Souza, T.; Chou, C. Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar germanium thin films as a high-rate sodiumion battery anode material. J. Phys. Chem. C 2013, 117, 18885–18890.CrossRefGoogle Scholar
  24. [24]
    Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 125, 4731–4734.CrossRefGoogle Scholar
  25. [25]
    He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.CrossRefGoogle Scholar
  26. [26]
    Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as highperformance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.CrossRefGoogle Scholar
  27. [27]
    Lu, Y. C.; Ma, C. Z.; Alvarado, J.; Dimov, N.; Meng, Y. S.; Okada, S. Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 16971–16977.CrossRefGoogle Scholar
  28. [28]
    Sun, W. P.; Rui, X. H.; Yang, D.; Sun, Z. Q.; Li, B.; Zhang, W. Y.; Zong, Y.; Madhavi, S.; Dou, S. X.; Yan, Q. Y. Twodimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 2015, 9, 11371–11381.CrossRefGoogle Scholar
  29. [29]
    Liu, X.; Zhang, K.; Lei, K. X.; Li, F. J.; Tao, Z. L.; Chen, J. Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 2016, 9, 198–206.CrossRefGoogle Scholar
  30. [30]
    Wang, H.; Lan, X. Z.; Jiang, D. L.; Zhang, Y.; Zhong, H. H.; Zhang, Z. P.; Jiang, Y. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 2015, 283, 187–194.CrossRefGoogle Scholar
  31. [31]
    Choi, S. H.; Ko, Y. N.; Lee, J. K.; Kang, Y. C. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788.CrossRefGoogle Scholar
  32. [32]
    Zhang, Z. A.; Yang, X.; Fu, Y.; Du, K. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sources 2015, 296, 2–9.CrossRefGoogle Scholar
  33. [33]
    Xiong, X. Q.; Luo, W.; Hu, X. L.; Chen, C. J.; Long, Q.; Hou, D. F.; Huang, Y. H. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 2015, 5, 9254.CrossRefGoogle Scholar
  34. [34]
    Li, Y. F.; Liang, Y. L.; Hernandez, F. C. R.; Yoo, H. D.; An, Q. Y.; Yao, Y. Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 2015, 15, 453–461.CrossRefGoogle Scholar
  35. [35]
    Wang, W. J.; Pan, X.; Liu, W. Q.; Zhang, B.; Chen, H. W.; Fang, X. Q.; Yao, J. X.; Dai, S. Y. FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 2014, 50, 2618–2620.CrossRefGoogle Scholar
  36. [36]
    Yuan, B. X.; Luan, W. L.; Tu, S. T. One-step synthesis of cubic FeS2 and flower-like FeSe2 particles by a solvothermal reduction process. Dalton Trans. 2012, 41, 772–776.CrossRefGoogle Scholar
  37. [37]
    Shi, W. D.; Zhang, X.; Che, G. B.; Fan, W. Q.; Liu, C. B. Controlled hydrothermal synthesis and magnetic properties of three-dimensional FeSe2 rod clusters and microspheres. Chem. Eng. J. 2013, 215–216, 508–516.CrossRefGoogle Scholar
  38. [38]
    Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.CrossRefGoogle Scholar
  39. [39]
    Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.CrossRefGoogle Scholar
  40. [40]
    Mai, L. Q.; An, Q. Y.; Wei, Q. L.; Fei, J. Y.; Zhang, P. F.; Xu, X.; Zhao, Y. L.; Yan, M. Y.; Wen, W.; Xu, L. Nanoflakesassembled three-dimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity. Small 2014, 10, 3032–3037.CrossRefGoogle Scholar
  41. [41]
    Han, C. H.; Pi, Y. Q.; An, Q. Y.; Mai, L. Q.; Xie, J. L.; Xu, X.; Xu, L.; Zhao, Y. L.; Niu, C. J.; Khan, A. M. et al. Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries. Nano Lett. 2012, 12, 4668–4673.CrossRefGoogle Scholar
  42. [42]
    Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.CrossRefGoogle Scholar
  43. [43]
    Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.CrossRefGoogle Scholar
  44. [44]
    Yu, P. F.; Li, C. L.; Guo, X. X. Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 2014, 118, 10616–10624.CrossRefGoogle Scholar
  45. [45]
    Zhu, Y. J.; Fan, X. L.; Suo, L. M.; Luo, C.; Gao, T.; Wang, C. S. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 2016, 10, 1529–1538.CrossRefGoogle Scholar
  46. [46]
    Son, S. B.; Yersak, T. A.; Piper, D. M.; Kim, S. C.; Kang, C. S.; Cho, J. S.; Suh, S. S.; Kim, Y. U.; Oh, K. H.; Lee, S. H. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv. Energy Mater. 2014, 4, 1300961.CrossRefGoogle Scholar
  47. [47]
    Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/ charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.CrossRefGoogle Scholar
  48. [48]
    Liu, J.; Wen, Y. R.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earthabundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025–6030.CrossRefGoogle Scholar
  49. [49]
    Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541.CrossRefGoogle Scholar
  50. [50]
    Wei, X. J.; An, Q. Y.; Wei, Q. L.; Yan, M. Y.; Wang, X. P.; Li, Q. D.; Zhang, P. F.; Wang, B. L.; Mai, L. Q. A bowknot-like RuO2 quantum dots@V2O5 cathode with largely improved electrochemical performance. Phys. Chem. Chem. Phys. 2014, 16, 18680–18685.CrossRefGoogle Scholar
  51. [51]
    Wei, X. J.; Tang, C. J.; Wang, X. P.; Zhou, L.; Wei, Q. L.; Yan, M. Y.; Sheng, J. Z.; Hu, P.; Wang, B. L.; Mai, L. Q. Copper silicate hydrate hollow spheres constructed by nanotubes encapsulated in reduced graphene oxide as longlife lithium-ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 26572–26578.CrossRefGoogle Scholar
  52. [52]
    Wei, Q. L.; An, Q. Y.; Chen, D. D.; Mai, L. Q.; Chen, S. Y.; Zhao, Y. L.; Hercule, K. M.; Xu, L.; Khan, A. M.; Zhang, Q. J. One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett. 2014, 14, 1042–1048.CrossRefGoogle Scholar
  53. [53]
    Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in-situ X-ray absorption spectroscopic studies. J. Phys. Chem. C 2011, 115, 25132–25137.CrossRefGoogle Scholar
  54. [54]
    Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium–air battery. Nat. Chem. 2012, 4, 579–585.CrossRefGoogle Scholar
  55. [55]
    Wang, X. P.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wei, X. J.; Zhou, L.; Zhao, K. N.; Luo, W.; Yan, M. Y. et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodiumion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 2015, 5, 1500716.CrossRefGoogle Scholar
  56. [56]
    Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: An intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A 2013, 1, 2653–2662.CrossRefGoogle Scholar
  57. [57]
    Ko, Y. N.; Choi, S. H.; Kang, Y. C. Hollow cobalt selenide microspheres: Synthesis and application as anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 6449–6456.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Xiujuan Wei
    • 1
  • Chunjuan Tang
    • 1
    • 2
  • Qinyou An
    • 1
  • Mengyu Yan
    • 1
  • Xuanpeng Wang
    • 1
  • Ping Hu
    • 1
  • Xinyin Cai
    • 1
  • Liqiang Mai
    • 1
    • 3
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Department of Mathematics and PhysicsLuoyang Institute of Science and TechnologyLuoyangChina
  3. 3.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations