Nano Research

, Volume 10, Issue 9, pp 3164–3177 | Cite as

Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes

Research Article

Abstract

The homogeneous incorporation of heteroatoms into two-dimensional C nanostructures, which leads to an increased chemical reactivity and electrical conductivity as well as enhanced synergistic catalysis as a conductive matrix to disperse and encapsulate active nanocatalysts, is highly attractive and quite challenging. In this study, by using the natural and cheap hydrotropic amino acid proline—which has remarkably high solubility in water and a desirable N content of ~12.2 wt.%—as a C precursor pyrolyzed in the presence of a cubic KCl template, we developed a facile protocol for the large-scale production of N-doped C nanosheets with a hierarchically porous structure in a homogeneous dispersion. With concomitantly encapsulated and evenly spread Fe2O3 nanoparticles surrounded by two protective ultrathin layers of inner Fe3C and outer onion-like C, the resulting N-doped graphitic C nanosheet hybrids (Fe2O3@Fe3C-NGCNs) exhibited a very high Li-storage capacity and excellent rate capability with a reliable and prolonged cycle life. A reversible capacity as high as 857 mAh•g–1 at a current density of 100 mA•g–1 was observed even after 100 cycles. The capacity retention at a current density 10 times higher—1,000 mA•g–1—reached 680 mAh•g–1, which is 79% of that at 100 mA•g–1, indicating that the hybrids are promising as anodes for advanced Li-ion batteries. The results highlight the importance of the heteroatomic dopant modification of the NGCNs host with tailored electronic and crystalline structures for competitive Li-storage features.

Keywords

proline N-doped C nanosheet porous encaged Fe2O3@Fe3Li-ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1533_MOESM1_ESM.pdf (2.6 mb)
Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes

References

  1. [1]
    He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.CrossRefGoogle Scholar
  2. [2]
    Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2016, 9, 128–138.CrossRefGoogle Scholar
  3. [3]
    Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.CrossRefGoogle Scholar
  4. [4]
    Jia, X. L.; Lu, Y. F.; Wei, F. Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes. Nano Res. 2016, 9, 230–239.CrossRefGoogle Scholar
  5. [5]
    Liu, L.; Yang, X. F.; Lv, C. X.; Zhu, A. M.; Zhu, X. Y.; Guo, S. J.; Chen, C. M.; Yang, D. J. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Appl. Mater. Interfaces 2016, 8, 7047–7053.CrossRefGoogle Scholar
  6. [6]
    Zhuang, X. D.; Zhang, F.; Wu, D. Q.; Feng, X. L. Graphene coupled schiff-base porous polymers: Towards nitrogenenriched porous carbon nanosheets with ultrahigh electrochemical capacity. Adv. Mater. 2014, 26, 3081–3086.CrossRefGoogle Scholar
  7. [7]
    An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256.CrossRefGoogle Scholar
  8. [8]
    Ma, Y.; Fang, C. L.; Ding, B.; Ji, G.; Lee, J. Y. Fe-doped MnxOy with hierarchical porosity as a high-performance lithium-ion battery anode. Adv. Mater. 2013, 25, 4646–4652.CrossRefGoogle Scholar
  9. [9]
    Saito, Y.; Luo, X.; Zhao, C. S.; Pan, W.; Chen, C. M.; Gong, J. H.; Matsumoto, H.; Yao, J.; Wu, H. Filling the gaps between graphene oxide: A general strategy toward nanolayered oxides. Adv. Funct. Mater. 2015, 25, 5683–5690.CrossRefGoogle Scholar
  10. [10]
    Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Epitaxial growth of branched α-Fe2O3/SnO2 nanoheterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.CrossRefGoogle Scholar
  11. [11]
    Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107.CrossRefGoogle Scholar
  12. [12]
    Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.CrossRefGoogle Scholar
  13. [13]
    Yang, Y.; Fan, X. J.; Casillas, G.; Peng, Z. W.; Ruan, G. D.; Wang, G.; Yacaman, M. J.; Tour, J. M. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano 2014, 8, 3939–3946.CrossRefGoogle Scholar
  14. [14]
    Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.CrossRefGoogle Scholar
  15. [15]
    Cao, K. Z.; Jiao, L. F.; Liu, H. Q.; Liu, Y. C.; Wang, Y. J.; Guo, Z. P.; Yuan, H. T. Lithium-ion batteries: 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1401421.CrossRefGoogle Scholar
  16. [16]
    Zhang, J. N.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Guo, S. J. Beyond yolk–shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.CrossRefGoogle Scholar
  17. [17]
    Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.CrossRefGoogle Scholar
  18. [18]
    Huo, K. F.; Wang, L.; Peng, C. J.; Peng, X.; Li, Y. Y.; Li, Q. W.; Jin, Z. Z.; Chu, P. K. Crumpled N-doped carbon nanotubes encapsulated with peapod-like Ge nanoparticles for high-rate and long-life Li-ion battery anodes. J. Mater. Chem. A 2016, 4, 7585–7590.CrossRefGoogle Scholar
  19. [19]
    Zhang, Y.-C.; You, Y.; Xin, S.; Yin, Y.-X.; Zhang, J.; Wang, P.; Zheng, X.-S.; Cao, F.-F.; Guo, Y.-G. Rice huskderived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120–127.CrossRefGoogle Scholar
  20. [20]
    Yang, W.; Fellinger, T.-P.; Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 2011, 133, 206–209.CrossRefGoogle Scholar
  21. [21]
    Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.CrossRefGoogle Scholar
  22. [22]
    Zhu, J. B.; Li, K.; Xiao, M. L.; Liu, C. P.; Wu, Z. J.; Ge, J. J.; Xing, W. Significantly enhanced oxygen reduction reaction performance of N-doped carbon by heterogeneous sulfur incorporation: Synergistic effect between the two dopants in metal-free catalysts. J. Mater. Chem. A 2016, 4, 7422–7429.CrossRefGoogle Scholar
  23. [23]
    Lee, W. J.; Maiti, U. N.; Lee, J. M.; Lim, J.; Han, T. H.; Kim, S. O. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem. Commun. 2014, 50, 6818–6830.CrossRefGoogle Scholar
  24. [24]
    Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum sulfide/N-doped cnt forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228–1233.CrossRefGoogle Scholar
  25. [25]
    Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857–1959.CrossRefGoogle Scholar
  26. [26]
    Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S. Y.; Antonietti, M.; Titirici, M. M. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 2010, 22, 5202–5206.CrossRefGoogle Scholar
  27. [27]
    Paraknowitsch, J. P.; Zhang, J.; Su, D. S.; Thomas, A.; Antonietti, M. Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 2010, 22, 87–92.CrossRefGoogle Scholar
  28. [28]
    Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRefGoogle Scholar
  29. [29]
    Xie, S. L.; Huang, S. C.; Wei, W. J.; Yang, X. Z.; Liu, Y.; Lu, X. H.; Tong, Y. X. Chitosan waste-derived Co and N Co-doped carbon electrocatalyst for efficient oxygen reduction reaction. ChemElectroChem 2015, 2, 1806–1812.CrossRefGoogle Scholar
  30. [30]
    Yang, Z.; Nie, H. G.; Chen, X. A.; Chen, X. H.; Huang, S. M. Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 2013, 236, 238–249.CrossRefGoogle Scholar
  31. [31]
    López-Salas, N.; Gutiérrez, M. C.; Ania, C. O.; Muñoz-Márquez, M. A.; Ferrer, M. L.; del Monte, F. Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts. J. Mater. Chem. A 2016, 4, 478–488.CrossRefGoogle Scholar
  32. [32]
    Chen, H. C.; Sun, F. G.; Wang, J. T.; Li, W. C.; Qiao, W. M.; Ling, L. C.; Long, D. H. Nitrogen doping effects on the physical and chemical properties of mesoporous carbons. J. Phys. Chem. C 2013, 117, 8318–8328.CrossRefGoogle Scholar
  33. [33]
    Jiang, K. Y.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett. 2003, 3, 275–277.CrossRefGoogle Scholar
  34. [34]
    Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.CrossRefGoogle Scholar
  35. [35]
    Zhang, J. F.; Ren, W. Y.; Zhou, Y. Y.; Li, P.; Xu, L.; Sun, D. M.; Wu, P.; Zhou, Y. M.; Tang, Y. W. Hermetically coated and well-separated Co3O4 nanophase within porous graphitic carbon nanosheets: Synthesis, confinement effect, and improved lithium-storage capacity and durability. Chem. —Eur. J. 2016, 22, 9599–9606.CrossRefGoogle Scholar
  36. [36]
    Zhang, J. F.; Zhu, H. M.; Wu, P.; Ge, C. W.; Sun, D. M.; Xu, L.; Tang, Y. W.; Zhou, Y. M. Rational synthesis of Ni nanoparticle-embedded porous graphitic carbon nanosheets with enhanced lithium storage properties. Nanoscale 2015, 7, 18211–18217.CrossRefGoogle Scholar
  37. [37]
    Balogun, M.-S.; Qiu, W. T.; Lyu, F.; Luo, Y.; Meng, H.; Li, J. T.; Mai, W. J.; Mai, L. Q.; Tong, Y. X. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 2016, 26, 446–455.CrossRefGoogle Scholar
  38. [38]
    Xie, Z. Q.; He, Z. Y.; Feng, X. H.; Xu, W. W.; Cui, X. D.; Zhang, J. H.; Yan, C.; Carreon, M. A.; Liu, Z.; Wang, Y. Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2016, 8, 10324–10333.CrossRefGoogle Scholar
  39. [39]
    Wang, Y. H.; Ding, X.; Wang, F.; Li, J. Q.; Song, S. Y.; Zhang, H. J. Nanoconfined nitrogen-doped carbon-coated MnO nanoparticles in graphene enabling high performance for lithium-ion batteries and oxygen reduction reaction. Chem. Sci. 2016, 7, 4284–4290.CrossRefGoogle Scholar
  40. [40]
    Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. D. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395–7398.CrossRefGoogle Scholar
  41. [41]
    Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 127, 8297–8301.CrossRefGoogle Scholar
  42. [42]
    Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.CrossRefGoogle Scholar
  43. [43]
    Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582–586.CrossRefGoogle Scholar
  44. [44]
    Chen, S. Q.; Bao, P. T.; Wan, G. X. Synthesis of Fe2O3-CNT-graphene hybrid materials with an open threedimensional nanostructure for high capacity lithium storage. Nano Energy 2013, 2, 425–434.CrossRefGoogle Scholar
  45. [45]
    Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G. et al. Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv. Mater. 2013, 25, 6250–6255.CrossRefGoogle Scholar
  46. [46]
    Cao, K. Z.; Jiao, L. F.; Liu, H. Q.; Liu, Y. C.; Wang, Y. J.; Guo, Z. P.; Yuan, H. T. 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1401421.CrossRefGoogle Scholar
  47. [47]
    Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3–carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 2015, 9, 4026–4035.CrossRefGoogle Scholar
  48. [48]
    Grinbom, G.; Duveau, D.; Gershinsky, G.; Monconduit, L.; Zitoun, D. Silicon/hollow γ-Fe2O3 nanoparticles as efficient anodes for Li-ion batteries. Chem. Mater. 2015, 27, 2703–2710.CrossRefGoogle Scholar
  49. [49]
    Hu, J. K.; Sun, C.-F.; Gillette, E.; Gui, Z.; Wang, Y. H.; Lee, S. B. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes. Nanoscale 2016, 8, 12958–12969.CrossRefGoogle Scholar
  50. [50]
    Liang, J.; Xiao, C. H.; Chen, X.; Gao, R. X.; Ding, S. J. Porous γ-Fe2O3 spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials. Nanotechnology 2016, 27, 215403.CrossRefGoogle Scholar
  51. [51]
    Li, Y.; Zhu, C. L.; Lu, T.; Guo, Z. P.; Zhang, D.; Ma, J.; Zhu, S. M. Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon 2013, 52, 565–573.CrossRefGoogle Scholar
  52. [52]
    Wang, J. H.; Gao, M. X.; Pan, H. G.; Liu, Y. F.; Zhang, Z.; Li, J. X.; Su, Q. M.; Du, G. H.; Zhu, M.; Ouyang, L. Z. et al. Mesoporous Fe2O3 flakes of high aspect ratio encased within thin carbon skeleton for superior lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 14178–14187.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jingfei Zhang
    • 1
  • Lijuan Qi
    • 1
  • Xiaoshu Zhu
    • 1
  • Xiaohong Yan
    • 1
  • Yufeng Jia
    • 1
  • Lin Xu
    • 1
  • Dongmei Sun
    • 1
  • Yawen Tang
    • 1
  1. 1.Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Analysis and Testing Center, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina

Personalised recommendations