Nano Research

, Volume 10, Issue 9, pp 3151–3163 | Cite as

Fluorination of suspended graphene

  • Claudia Struzzi
  • Mattia Scardamaglia
  • Nicolas Reckinger
  • Jean-François Colomer
  • Hikmet Sezen
  • Matteo Amati
  • Luca Gregoratti
  • Rony Snyders
  • Carla Bittencourt
Research Article

Abstract

Suspended graphene is exposed to different fluorine-containing species produced by a plasma source fed with CF4 precursor gas. We investigate the fluorination process by selecting two different kinetic energies for the ions striking the graphene surface. The chemical-bonding environment is discussed, and the control of the graphene-fluorination homogeneity is investigated at the individual graphene sheets. The modifications of the electronic and structural properties are examined by scanning photoelectron microscopy, micro-Raman analysis, and scanning electron microscopy. The results are compared with those obtained for supported graphene on copper. Suspended graphene provides a quasi-ideal model for investigating the intrinsic properties of irradiated carbon nano-systems while avoiding damage due to backscattered atoms and recoil due to a supporting substrate.

Keywords

graphene fluorination spectromicroscopy X-ray photoelectron spectroscopy (XPS) Raman scanning electron microscopy (SEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1532_MOESM1_ESM.pdf (1.7 mb)
Fluorination of suspended graphene

References

  1. [1]
    Romero-Aburto, R.; Narayanan, T. N.; Nagaoka, Y.; Hasumura, T.; Mitcham, T. M.; Fukuda, T.; Cox, P. J.; Bouchard, R. R.; Maekawa, T.; Kumar, D. S. et al. Fluorinated graphene oxide: A new multimodal material for biological applications. Adv. Mater. 2013, 25, 5632–5637.CrossRefGoogle Scholar
  2. [2]
    Wang, Y.; Lee, W. C.; Manga, K. K.; Ang, P. K.; Lu, J.; Liu, Y. P.; Lim, C. T.; Loh, K. P. Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 2012, 24, 4285–4290.CrossRefGoogle Scholar
  3. [3]
    Cui, X. W.; Chen, J.; Wang, T. F.; Chen, W. X. Rechargeable batteries with high energy storage activated by in-situ induced fluorination of carbon nanotube cathode. Sci. Rep. 2014, 4, 5310.CrossRefGoogle Scholar
  4. [4]
    Vizintin, A.; Lozinšek, M.; Chellappan, R. K.; Foix, D.; Krajnc, A.; Mali, G.; Drazic, G.; Genorio, B.; Dedryvère, R.; Dominko, R. Fluorinated reduced graphene oxide as an interlayer in Li–S batteries. Chem. Mater. 2015, 27, 7070–7081.CrossRefGoogle Scholar
  5. [5]
    Katkov, M. V.; Sysoev, V. I.; Gusel’nikov, A. V.; Asanov, I. P.; Bulusheva, L. G.; Okotrub, A. V. A backside fluorine-functionalized graphene layer for ammonia detection. Phys. Chem. Chem. Phys. 2015, 17, 444–450.CrossRefGoogle Scholar
  6. [6]
    Urbanová, V.; Karlický, F.; Matěj, A.; Šembera, F.; Janoušek, Z.; Perman, J. A.; Ranc, V.; Čépe, K.; Michl, J.; Otyepka, M. et al. Fluorinated graphenes as advanced biosensors—Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale 2016, 8, 12134–12142.CrossRefGoogle Scholar
  7. [7]
    Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001–3005.CrossRefGoogle Scholar
  8. [8]
    Wang, B.; Wang, J. J.; Zhu, J. Fluorination of graphene: A spectroscopic and microscopic study. ACS Nano 2014, 8, 1862–1870.CrossRefGoogle Scholar
  9. [9]
    Feng, W.; Long, P.; Feng, Y. Y.; Li, Y. Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci. 2016, 3, 1500413.CrossRefGoogle Scholar
  10. [10]
    Costa, S. D.; Ek Weis, J.; Frank, O.; Bastl, Z.; Kalbac, M. Thermal treatment of fluorinated graphene: An in situ Raman spectroscopy study. Carbon 2015, 84, 347–354.CrossRefGoogle Scholar
  11. [11]
    Felten, A.; Bittencourt, C.; Pireaux, J. J.; Van Lier, G.; Charlier, J. C. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J. Appl. Phys. 2005, 98, 074308.CrossRefGoogle Scholar
  12. [12]
    Zhu, Y. W.; Cheong, F. C.; Yu, T.; Xu, X. J.; Lim, C. T.; Thong, J. T. L.; Shen, Z. X.; Ong, C. K.; Liu, Y. J.; Wee, A. T. S. et al. Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films. Carbon 2005, 43, 395–400.CrossRefGoogle Scholar
  13. [13]
    Struzzi, C.; Scardamaglia, M.; Hemberg, A.; Petaccia, L.; Colomer, J.-F.; Snyders, R.; Bittencourt, C. Plasma fluorination of vertically aligned carbon nanotubes: Functionalization and thermal stability. Beilstein J. Nanotechnol. 2015, 6, 2263–2271.CrossRefGoogle Scholar
  14. [14]
    Felten, A.; Eckmann, A.; Pireaux, J.-J.; Krupke, R.; Casiraghi, C. Controlled modification of mono- and bilayer graphene in O2, H2 and CF4 plasmas. Nanotechnology 2013, 24, 355705.CrossRefGoogle Scholar
  15. [15]
    Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J. J.; Hirtz, M.; Krupke, R.; Casiraghi, C. Single- and double-sided chemical functionalization of bilayer graphene. Small 2013, 9, 631–639.CrossRefGoogle Scholar
  16. [16]
    Li, H.; Daukiya, L.; Haldar, S.; Lindblad, A.; Sanyal, B.; Eriksson, O.; Aubel, D.; Hajjar-Garreau, S.; Simon, L.; Leifer, K. Site-selective local fluorination of graphene induced by focused ion beam irradiation. Sci. Rep. 2016, 6, 19719.CrossRefGoogle Scholar
  17. [17]
    Iyer, G. R. S.; Wang, J.; Wells, G.; Bradley, M. P.; Borondics, F. Nanoscale imaging of freestanding nitrogen doped single layer graphene. Nanoscale 2015, 7, 2289–2294.CrossRefGoogle Scholar
  18. [18]
    Scardamaglia, M.; Aleman, B.; Amati, M.; Ewels, C.; Pochet, P.; Reckinger, N.; Colomer, J.-F.; Skaltsas, T.; Tagmatarchis, N.; Snyders, R. et al. Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon 2014, 73, 371–381.CrossRefGoogle Scholar
  19. [19]
    Struzzi, C.; Erbahar, D.; Scardamaglia, M.; Amati, M.; Gregoratti, L.; Lagos, M. J.; Van Tendeloo, G.; Snyders, R.; Ewels, C.; Bittencourt, C. Selective decoration of isolated carbon nanotubes by potassium evaporation: Scanning photoemission microscopy and density functional theory. J. Mater. Chem. C 2015, 3, 2518–2527.CrossRefGoogle Scholar
  20. [20]
    Reserbat-Plantey, A.; Kalita, D.; Han, Z.; Ferlazzo, L.; Autier-Laurent, S.; Komatsu, K.; Li, C.; Weil, R.; Ralko, A.; Marty, L. et al. Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 2014, 14, 5044–5051.CrossRefGoogle Scholar
  21. [21]
    Polyzos, I.; Bianchi, M.; Rizzi, L.; Koukaras, E. N.; Parthenios, J.; Papagelis, K.; Sordan, R.; Galiotis, C. Suspended monolayer graphene under true uniaxial deformation. Nanoscale 2015, 7, 13033–13042.CrossRefGoogle Scholar
  22. [22]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  23. [23]
    Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.CrossRefGoogle Scholar
  24. [24]
    Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett. 2012, 3, 953–958.CrossRefGoogle Scholar
  25. [25]
    Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Metal−graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Lett. 2011, 11, 1087–1092.CrossRefGoogle Scholar
  26. [26]
    Nair, R. R.; Ren, W. C.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. J. et al. Fluorographene: A two-dimensional counterpart of Teflon. Small 2010, 6, 2877–2884.CrossRefGoogle Scholar
  27. [27]
    Kashtiban, R. J.; Dyson, M. A.; Nair, R. R.; Zan, R.; Wong, S. L.; Ramasse, Q.; Geim, A. K.; Bangert, U.; Sloan, J. Atomically resolved imaging of highly ordered alternating fluorinated graphene. Nat. Commun. 2014, 5, 4902.CrossRefGoogle Scholar
  28. [28]
    Zhou, B. M.; Qian, X. M.; Li, M. M.; Ma, J. L.; Liu, L. S.; Hu, C. S.; Xu, Z. W.; Jiao, X. N. Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma. J. Nanopart. Res. 2015, 17, 130.CrossRefGoogle Scholar
  29. [29]
    Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588.CrossRefGoogle Scholar
  30. [30]
    Chen, M. J.; Zhou, H. Q.; Qiu, C. Y.; Yang, H. C.; Yu, F.; Sun, L. F. Layer-dependent fluorination and doping of graphene via plasma treatment. Nanotechnology 2012, 23, 115706.CrossRefGoogle Scholar
  31. [31]
    Compagnini, G.; Giannazzo, F.; Sonde, S.; Raineri, V.; Rimini, E. Ion irradiation and defect formation in single layer graphene. Carbon 2009, 47, 3201–3207.CrossRefGoogle Scholar
  32. [32]
    Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.; Tolvanen, A.; Nordlund, K.; Keinonen, J. Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 2010, 81, 153401.CrossRefGoogle Scholar
  33. [33]
    Lopez, J. J.; Greer, F.; Greer, J. R. Enhanced resistance of single-layer graphene to ion bombardment. J. Appl. Phys. 2010, 107, 104326.CrossRefGoogle Scholar
  34. [34]
    Sysoev, V. I.; Gusel’nikov, A. V.; Katkov, M. V.; Asanov, I. P.; Bulusheva, L. G.; Okotrub, A. V. Sensor properties of electron beam irradiated fluorinated graphite. J. Nanophoton. 2015, 10, 012512.CrossRefGoogle Scholar
  35. [35]
    Ohana, I.; Palchan, I.; Yacoby, Y.; Davidov, D.; Selig, H. Raman scattering of stage 2 graphite fluorine intercalation compounds. Solid State Commun. 1985, 56, 505–508.CrossRefGoogle Scholar
  36. [36]
    Asanov, I. P.; Bulusheva, L. G.; Dubois, M.; Yudanov, N. F.; Alexeev, A. V.; Makarova, T. L.; Okotrub, A. V. Graphene nanochains and nanoislands in the layers of room-temperature fluorinated graphite. Carbon 2013, 59, 518–529.CrossRefGoogle Scholar
  37. [37]
    Malhotra, M.; Raiko, V.; Fedosenko, G.; Theirich, D.; Engemann, J.; Kumar, S. Plasma chemical vapor deposited fine grain diamond and tetrahedral hydrogenated carbon films. In Diamond Science and Technology; Stefan, V.; Prokhorov, A. M., Eds.; The Stefan University Press: La Jolla, CA, 2002; Vol. 1, pp 99–163.Google Scholar
  38. [38]
    Compagnini, G.; Foti, G. 1430 cm−1 Raman line in ion implanted carbon rich amorphous silicon carbide. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. Atoms 1997, 127–128, 639–642.CrossRefGoogle Scholar
  39. [39]
    Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 2nd ed.; Academic Press, Inc.: New York, 1975.Google Scholar
  40. [40]
    Abyaneh, M. K.; Gregoratti, L.; Amati, M.; Dalmiglio, M.; Kiskinova, M. Scanning photoelectron microscopy: A powerful technique for probing micro and nano-structures. e-J. Surf. Sci. Nanotechnol. 2011, 9, 158–162.CrossRefGoogle Scholar
  41. [41]
    Reckinger, N.; Felten, A.; Santos, C. N.; Hackens, B.; Colomer, J.-F. The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition. Carbon 2013, 63, 84–91.CrossRefGoogle Scholar
  42. [42]
    Scardamaglia, M.; Struzzi, C.; Aparicio Rebollo, F. J.; De Marco, P.; Mudimela, P. R.; Colomer, J.-F.; Amati, M.; Gregoratti, L.; Petaccia, L.; Snyders, R. et al. Tuning electronic properties of carbon nanotubes by nitrogen grafting: Chemistry and chemical stability. Carbon 2015, 83, 118–127.CrossRefGoogle Scholar
  43. [43]
    Scardamaglia, M.; Struzzi, C.; Osella, S.; Reckinger, N.; Colomer, J.-F.; Petaccia, L.; Snyders, R.; Beljonne, D.; Bittencourt, C. Tuning nitrogen species to control the charge carrier concentration in highly doped graphene. 2D Mater. 2016, 3, 011001.CrossRefGoogle Scholar
  44. [44]
    Corbella, C.; Grosse-Kreul, S.; Kreiter, O.; de los Arcos, T.; Benedikt, J.; von Keudell, A. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces. Rev. Sci. Instrum. 2013, 84, 103303.CrossRefGoogle Scholar
  45. [45]
    Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 2009, 9, 346–352.CrossRefGoogle Scholar
  46. [46]
    Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.CrossRefGoogle Scholar
  47. [47]
    Fendel, P.; Francisand, A.; Czarnetzki, U. Sources and sinks of CF and CF2 in a cc-RF CF4-plasma under various conditions. Plasma Sources Sci. Technol. 2005, 14, 1.CrossRefGoogle Scholar
  48. [48]
    Ewels, C. P.; Van Lier, G.; Charlier, J.-C.; Heggie, M. I.; Briddon, P. R. Pattern formation on carbon nanotube surfaces. Phys. Rev. Lett. 2006, 96, 216103.CrossRefGoogle Scholar
  49. [49]
    Barinov, A.; Malcioğlu, O. B.; Fabris, S.; Sun, T.; Gregoratti, L.; Dalmiglio, M.; Kiskinova, M. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 2009, 113, 9009–9013.CrossRefGoogle Scholar
  50. [50]
    Scardamaglia, M.; Amati, M.; Llorente, B.; Mudimela, P.; Colomer, J.-F.; Ghijsen, J.; Ewels, C.; Snyders, R.; Gregoratti, L.; Bittencourt, C. Nitrogen ion casting on vertically aligned carbon nanotubes: Tip and sidewall chemical modification. Carbon 2014, 77, 319–328.CrossRefGoogle Scholar
  51. [51]
    Marsi, M.; Casalis, L.; Gregoratti, L.; Günther, S.; Kolmakov, A.; Kovac, J.; Lonza, D.; Kiskinova, M. ESCA microscopy at ELETTRA: What it is like to perform spectromicroscopy experiments on a third generation synchrotron radiation source. J. Electron Spectros. Relat. Phenomena 1997, 84, 73–83.CrossRefGoogle Scholar
  52. [52]
    Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mähl, S. et al. 48-channel electron detector for photoemission spectroscopy and microscopy. Rev. Sci. Instrum. 2004, 75, 64–68.CrossRefGoogle Scholar
  53. [53]
    Ni, Z. H.; Yu, T.; Luo, Z. Q.; Wang, Y. Y.; Liu, L.; Wong, C. P.; Miao, J. M.; Huang, W.; Shen, Z. X. Probing charged impurities in suspended graphene using Raman spectroscopy. ACS Nano 2009, 3, 569–574.CrossRefGoogle Scholar
  54. [54]
    Kalbac, M.; Lehtinen, O.; Krasheninnikov, A. V.; Keinonen, J. Ion-irradiation-induced defects in isotopically-labeled two layered graphene: Enhanced in-situ annealing of the damage. Adv. Mater. 2013, 25, 1004–1009.CrossRefGoogle Scholar
  55. [55]
    Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.CrossRefGoogle Scholar
  56. [56]
    Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiraghi, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Phys. Rev. B 2013, 88, 035426.CrossRefGoogle Scholar
  57. [57]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  58. [58]
    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.CrossRefGoogle Scholar
  59. [59]
    Hong, J.; Park, M. K.; Lee, E. J.; Lee, D.; Hwang, D. S.; Ryu, S. Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 2013, 3, 2700.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Claudia Struzzi
    • 1
  • Mattia Scardamaglia
    • 1
  • Nicolas Reckinger
    • 2
  • Jean-François Colomer
    • 2
  • Hikmet Sezen
    • 3
  • Matteo Amati
    • 3
  • Luca Gregoratti
    • 3
  • Rony Snyders
    • 1
    • 4
  • Carla Bittencourt
    • 1
  1. 1.Chimie des Interactions Plasma-Surface, CIRMAPUniversity of MonsMonsBelgium
  2. 2.Research Group on Carbon Nanostructures (CARBONNAGe)University of NamurNamurBelgium
  3. 3.Elettra - Sincrotrone Trieste S.C.p.A. di interesse nazionaleTriesteItaly
  4. 4.Materia Nova Research CenterMonsBelgium

Personalised recommendations