Nano Research

, Volume 10, Issue 9, pp 3151–3163 | Cite as

Fluorination of suspended graphene

  • Claudia Struzzi
  • Mattia Scardamaglia
  • Nicolas Reckinger
  • Jean-François Colomer
  • Hikmet Sezen
  • Matteo Amati
  • Luca Gregoratti
  • Rony Snyders
  • Carla Bittencourt
Research Article


Suspended graphene is exposed to different fluorine-containing species produced by a plasma source fed with CF4 precursor gas. We investigate the fluorination process by selecting two different kinetic energies for the ions striking the graphene surface. The chemical-bonding environment is discussed, and the control of the graphene-fluorination homogeneity is investigated at the individual graphene sheets. The modifications of the electronic and structural properties are examined by scanning photoelectron microscopy, micro-Raman analysis, and scanning electron microscopy. The results are compared with those obtained for supported graphene on copper. Suspended graphene provides a quasi-ideal model for investigating the intrinsic properties of irradiated carbon nano-systems while avoiding damage due to backscattered atoms and recoil due to a supporting substrate.


graphene fluorination spectromicroscopy X-ray photoelectron spectroscopy (XPS) Raman scanning electron microscopy (SEM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Belgian Fund for Scientific Research (FRS-FNRS) under the FRFC contract “CHEMOGRAPHENE” (No. 2.4577.11). This research was also supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme “NanoCF” (No. PIRSES-GA-2013-612577). C. S. is grateful to the “Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture” (F.R.I.A.) for the doctoral fellowship. M. S. is FRS-FNRS post-doctoral researcher, J.-F. C. and C. B. are Researcher Associates at the FRS-FNRS. We thank M. Fant for technical assistance at the Elettra synchrotron, Y. Paint for SEM. The research leading to this work also received funding from the European Union Seventh Framework Program under grant agreement No 604391 Graphene Flagship.

Supplementary material

12274_2017_1532_MOESM1_ESM.pdf (1.7 mb)
Fluorination of suspended graphene


  1. [1]
    Romero-Aburto, R.; Narayanan, T. N.; Nagaoka, Y.; Hasumura, T.; Mitcham, T. M.; Fukuda, T.; Cox, P. J.; Bouchard, R. R.; Maekawa, T.; Kumar, D. S. et al. Fluorinated graphene oxide: A new multimodal material for biological applications. Adv. Mater. 2013, 25, 5632–5637.CrossRefGoogle Scholar
  2. [2]
    Wang, Y.; Lee, W. C.; Manga, K. K.; Ang, P. K.; Lu, J.; Liu, Y. P.; Lim, C. T.; Loh, K. P. Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 2012, 24, 4285–4290.CrossRefGoogle Scholar
  3. [3]
    Cui, X. W.; Chen, J.; Wang, T. F.; Chen, W. X. Rechargeable batteries with high energy storage activated by in-situ induced fluorination of carbon nanotube cathode. Sci. Rep. 2014, 4, 5310.CrossRefGoogle Scholar
  4. [4]
    Vizintin, A.; Lozinšek, M.; Chellappan, R. K.; Foix, D.; Krajnc, A.; Mali, G.; Drazic, G.; Genorio, B.; Dedryvère, R.; Dominko, R. Fluorinated reduced graphene oxide as an interlayer in Li–S batteries. Chem. Mater. 2015, 27, 7070–7081.CrossRefGoogle Scholar
  5. [5]
    Katkov, M. V.; Sysoev, V. I.; Gusel’nikov, A. V.; Asanov, I. P.; Bulusheva, L. G.; Okotrub, A. V. A backside fluorine-functionalized graphene layer for ammonia detection. Phys. Chem. Chem. Phys. 2015, 17, 444–450.CrossRefGoogle Scholar
  6. [6]
    Urbanová, V.; Karlický, F.; Matěj, A.; Šembera, F.; Janoušek, Z.; Perman, J. A.; Ranc, V.; Čépe, K.; Michl, J.; Otyepka, M. et al. Fluorinated graphenes as advanced biosensors—Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale 2016, 8, 12134–12142.CrossRefGoogle Scholar
  7. [7]
    Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001–3005.CrossRefGoogle Scholar
  8. [8]
    Wang, B.; Wang, J. J.; Zhu, J. Fluorination of graphene: A spectroscopic and microscopic study. ACS Nano 2014, 8, 1862–1870.CrossRefGoogle Scholar
  9. [9]
    Feng, W.; Long, P.; Feng, Y. Y.; Li, Y. Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci. 2016, 3, 1500413.CrossRefGoogle Scholar
  10. [10]
    Costa, S. D.; Ek Weis, J.; Frank, O.; Bastl, Z.; Kalbac, M. Thermal treatment of fluorinated graphene: An in situ Raman spectroscopy study. Carbon 2015, 84, 347–354.CrossRefGoogle Scholar
  11. [11]
    Felten, A.; Bittencourt, C.; Pireaux, J. J.; Van Lier, G.; Charlier, J. C. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J. Appl. Phys. 2005, 98, 074308.CrossRefGoogle Scholar
  12. [12]
    Zhu, Y. W.; Cheong, F. C.; Yu, T.; Xu, X. J.; Lim, C. T.; Thong, J. T. L.; Shen, Z. X.; Ong, C. K.; Liu, Y. J.; Wee, A. T. S. et al. Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films. Carbon 2005, 43, 395–400.CrossRefGoogle Scholar
  13. [13]
    Struzzi, C.; Scardamaglia, M.; Hemberg, A.; Petaccia, L.; Colomer, J.-F.; Snyders, R.; Bittencourt, C. Plasma fluorination of vertically aligned carbon nanotubes: Functionalization and thermal stability. Beilstein J. Nanotechnol. 2015, 6, 2263–2271.CrossRefGoogle Scholar
  14. [14]
    Felten, A.; Eckmann, A.; Pireaux, J.-J.; Krupke, R.; Casiraghi, C. Controlled modification of mono- and bilayer graphene in O2, H2 and CF4 plasmas. Nanotechnology 2013, 24, 355705.CrossRefGoogle Scholar
  15. [15]
    Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J. J.; Hirtz, M.; Krupke, R.; Casiraghi, C. Single- and double-sided chemical functionalization of bilayer graphene. Small 2013, 9, 631–639.CrossRefGoogle Scholar
  16. [16]
    Li, H.; Daukiya, L.; Haldar, S.; Lindblad, A.; Sanyal, B.; Eriksson, O.; Aubel, D.; Hajjar-Garreau, S.; Simon, L.; Leifer, K. Site-selective local fluorination of graphene induced by focused ion beam irradiation. Sci. Rep. 2016, 6, 19719.CrossRefGoogle Scholar
  17. [17]
    Iyer, G. R. S.; Wang, J.; Wells, G.; Bradley, M. P.; Borondics, F. Nanoscale imaging of freestanding nitrogen doped single layer graphene. Nanoscale 2015, 7, 2289–2294.CrossRefGoogle Scholar
  18. [18]
    Scardamaglia, M.; Aleman, B.; Amati, M.; Ewels, C.; Pochet, P.; Reckinger, N.; Colomer, J.-F.; Skaltsas, T.; Tagmatarchis, N.; Snyders, R. et al. Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon 2014, 73, 371–381.CrossRefGoogle Scholar
  19. [19]
    Struzzi, C.; Erbahar, D.; Scardamaglia, M.; Amati, M.; Gregoratti, L.; Lagos, M. J.; Van Tendeloo, G.; Snyders, R.; Ewels, C.; Bittencourt, C. Selective decoration of isolated carbon nanotubes by potassium evaporation: Scanning photoemission microscopy and density functional theory. J. Mater. Chem. C 2015, 3, 2518–2527.CrossRefGoogle Scholar
  20. [20]
    Reserbat-Plantey, A.; Kalita, D.; Han, Z.; Ferlazzo, L.; Autier-Laurent, S.; Komatsu, K.; Li, C.; Weil, R.; Ralko, A.; Marty, L. et al. Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 2014, 14, 5044–5051.CrossRefGoogle Scholar
  21. [21]
    Polyzos, I.; Bianchi, M.; Rizzi, L.; Koukaras, E. N.; Parthenios, J.; Papagelis, K.; Sordan, R.; Galiotis, C. Suspended monolayer graphene under true uniaxial deformation. Nanoscale 2015, 7, 13033–13042.CrossRefGoogle Scholar
  22. [22]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  23. [23]
    Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.CrossRefGoogle Scholar
  24. [24]
    Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett. 2012, 3, 953–958.CrossRefGoogle Scholar
  25. [25]
    Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Metal−graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Lett. 2011, 11, 1087–1092.CrossRefGoogle Scholar
  26. [26]
    Nair, R. R.; Ren, W. C.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. J. et al. Fluorographene: A two-dimensional counterpart of Teflon. Small 2010, 6, 2877–2884.CrossRefGoogle Scholar
  27. [27]
    Kashtiban, R. J.; Dyson, M. A.; Nair, R. R.; Zan, R.; Wong, S. L.; Ramasse, Q.; Geim, A. K.; Bangert, U.; Sloan, J. Atomically resolved imaging of highly ordered alternating fluorinated graphene. Nat. Commun. 2014, 5, 4902.CrossRefGoogle Scholar
  28. [28]
    Zhou, B. M.; Qian, X. M.; Li, M. M.; Ma, J. L.; Liu, L. S.; Hu, C. S.; Xu, Z. W.; Jiao, X. N. Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma. J. Nanopart. Res. 2015, 17, 130.CrossRefGoogle Scholar
  29. [29]
    Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588.CrossRefGoogle Scholar
  30. [30]
    Chen, M. J.; Zhou, H. Q.; Qiu, C. Y.; Yang, H. C.; Yu, F.; Sun, L. F. Layer-dependent fluorination and doping of graphene via plasma treatment. Nanotechnology 2012, 23, 115706.CrossRefGoogle Scholar
  31. [31]
    Compagnini, G.; Giannazzo, F.; Sonde, S.; Raineri, V.; Rimini, E. Ion irradiation and defect formation in single layer graphene. Carbon 2009, 47, 3201–3207.CrossRefGoogle Scholar
  32. [32]
    Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.; Tolvanen, A.; Nordlund, K.; Keinonen, J. Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 2010, 81, 153401.CrossRefGoogle Scholar
  33. [33]
    Lopez, J. J.; Greer, F.; Greer, J. R. Enhanced resistance of single-layer graphene to ion bombardment. J. Appl. Phys. 2010, 107, 104326.CrossRefGoogle Scholar
  34. [34]
    Sysoev, V. I.; Gusel’nikov, A. V.; Katkov, M. V.; Asanov, I. P.; Bulusheva, L. G.; Okotrub, A. V. Sensor properties of electron beam irradiated fluorinated graphite. J. Nanophoton. 2015, 10, 012512.CrossRefGoogle Scholar
  35. [35]
    Ohana, I.; Palchan, I.; Yacoby, Y.; Davidov, D.; Selig, H. Raman scattering of stage 2 graphite fluorine intercalation compounds. Solid State Commun. 1985, 56, 505–508.CrossRefGoogle Scholar
  36. [36]
    Asanov, I. P.; Bulusheva, L. G.; Dubois, M.; Yudanov, N. F.; Alexeev, A. V.; Makarova, T. L.; Okotrub, A. V. Graphene nanochains and nanoislands in the layers of room-temperature fluorinated graphite. Carbon 2013, 59, 518–529.CrossRefGoogle Scholar
  37. [37]
    Malhotra, M.; Raiko, V.; Fedosenko, G.; Theirich, D.; Engemann, J.; Kumar, S. Plasma chemical vapor deposited fine grain diamond and tetrahedral hydrogenated carbon films. In Diamond Science and Technology; Stefan, V.; Prokhorov, A. M., Eds.; The Stefan University Press: La Jolla, CA, 2002; Vol. 1, pp 99–163.Google Scholar
  38. [38]
    Compagnini, G.; Foti, G. 1430 cm−1 Raman line in ion implanted carbon rich amorphous silicon carbide. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. Atoms 1997, 127–128, 639–642.CrossRefGoogle Scholar
  39. [39]
    Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 2nd ed.; Academic Press, Inc.: New York, 1975.Google Scholar
  40. [40]
    Abyaneh, M. K.; Gregoratti, L.; Amati, M.; Dalmiglio, M.; Kiskinova, M. Scanning photoelectron microscopy: A powerful technique for probing micro and nano-structures. e-J. Surf. Sci. Nanotechnol. 2011, 9, 158–162.CrossRefGoogle Scholar
  41. [41]
    Reckinger, N.; Felten, A.; Santos, C. N.; Hackens, B.; Colomer, J.-F. The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition. Carbon 2013, 63, 84–91.CrossRefGoogle Scholar
  42. [42]
    Scardamaglia, M.; Struzzi, C.; Aparicio Rebollo, F. J.; De Marco, P.; Mudimela, P. R.; Colomer, J.-F.; Amati, M.; Gregoratti, L.; Petaccia, L.; Snyders, R. et al. Tuning electronic properties of carbon nanotubes by nitrogen grafting: Chemistry and chemical stability. Carbon 2015, 83, 118–127.CrossRefGoogle Scholar
  43. [43]
    Scardamaglia, M.; Struzzi, C.; Osella, S.; Reckinger, N.; Colomer, J.-F.; Petaccia, L.; Snyders, R.; Beljonne, D.; Bittencourt, C. Tuning nitrogen species to control the charge carrier concentration in highly doped graphene. 2D Mater. 2016, 3, 011001.CrossRefGoogle Scholar
  44. [44]
    Corbella, C.; Grosse-Kreul, S.; Kreiter, O.; de los Arcos, T.; Benedikt, J.; von Keudell, A. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces. Rev. Sci. Instrum. 2013, 84, 103303.CrossRefGoogle Scholar
  45. [45]
    Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 2009, 9, 346–352.CrossRefGoogle Scholar
  46. [46]
    Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.CrossRefGoogle Scholar
  47. [47]
    Fendel, P.; Francisand, A.; Czarnetzki, U. Sources and sinks of CF and CF2 in a cc-RF CF4-plasma under various conditions. Plasma Sources Sci. Technol. 2005, 14, 1.CrossRefGoogle Scholar
  48. [48]
    Ewels, C. P.; Van Lier, G.; Charlier, J.-C.; Heggie, M. I.; Briddon, P. R. Pattern formation on carbon nanotube surfaces. Phys. Rev. Lett. 2006, 96, 216103.CrossRefGoogle Scholar
  49. [49]
    Barinov, A.; Malcioğlu, O. B.; Fabris, S.; Sun, T.; Gregoratti, L.; Dalmiglio, M.; Kiskinova, M. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 2009, 113, 9009–9013.CrossRefGoogle Scholar
  50. [50]
    Scardamaglia, M.; Amati, M.; Llorente, B.; Mudimela, P.; Colomer, J.-F.; Ghijsen, J.; Ewels, C.; Snyders, R.; Gregoratti, L.; Bittencourt, C. Nitrogen ion casting on vertically aligned carbon nanotubes: Tip and sidewall chemical modification. Carbon 2014, 77, 319–328.CrossRefGoogle Scholar
  51. [51]
    Marsi, M.; Casalis, L.; Gregoratti, L.; Günther, S.; Kolmakov, A.; Kovac, J.; Lonza, D.; Kiskinova, M. ESCA microscopy at ELETTRA: What it is like to perform spectromicroscopy experiments on a third generation synchrotron radiation source. J. Electron Spectros. Relat. Phenomena 1997, 84, 73–83.CrossRefGoogle Scholar
  52. [52]
    Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mähl, S. et al. 48-channel electron detector for photoemission spectroscopy and microscopy. Rev. Sci. Instrum. 2004, 75, 64–68.CrossRefGoogle Scholar
  53. [53]
    Ni, Z. H.; Yu, T.; Luo, Z. Q.; Wang, Y. Y.; Liu, L.; Wong, C. P.; Miao, J. M.; Huang, W.; Shen, Z. X. Probing charged impurities in suspended graphene using Raman spectroscopy. ACS Nano 2009, 3, 569–574.CrossRefGoogle Scholar
  54. [54]
    Kalbac, M.; Lehtinen, O.; Krasheninnikov, A. V.; Keinonen, J. Ion-irradiation-induced defects in isotopically-labeled two layered graphene: Enhanced in-situ annealing of the damage. Adv. Mater. 2013, 25, 1004–1009.CrossRefGoogle Scholar
  55. [55]
    Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.CrossRefGoogle Scholar
  56. [56]
    Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiraghi, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Phys. Rev. B 2013, 88, 035426.CrossRefGoogle Scholar
  57. [57]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  58. [58]
    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.CrossRefGoogle Scholar
  59. [59]
    Hong, J.; Park, M. K.; Lee, E. J.; Lee, D.; Hwang, D. S.; Ryu, S. Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 2013, 3, 2700.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Claudia Struzzi
    • 1
  • Mattia Scardamaglia
    • 1
  • Nicolas Reckinger
    • 2
  • Jean-François Colomer
    • 2
  • Hikmet Sezen
    • 3
  • Matteo Amati
    • 3
  • Luca Gregoratti
    • 3
  • Rony Snyders
    • 1
    • 4
  • Carla Bittencourt
    • 1
  1. 1.Chimie des Interactions Plasma-Surface, CIRMAPUniversity of MonsMonsBelgium
  2. 2.Research Group on Carbon Nanostructures (CARBONNAGe)University of NamurNamurBelgium
  3. 3.Elettra - Sincrotrone Trieste S.C.p.A. di interesse nazionaleTriesteItaly
  4. 4.Materia Nova Research CenterMonsBelgium

Personalised recommendations