Nano Research

, Volume 10, Issue 9, pp 3136–3150 | Cite as

Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications

Research Article


Recently, flexible electrodes with biaxial/omnidirectional stretchability have attracted significant attention. However, most existing pliable electrode materials can be only stretched in one direction. In this work, an unexpected isotropic van der Waals (vdW) heterostructure is proposed, based on the assembly of two-dimensional crystals of anisotropic black phosphorene (BP) and transition metal carbide (TiC2). Using vdW-corrected density functional theory calculations, the BP/TiC2 vdW heterostructure was predicted to have excellent structural and mechanical stability, superior electrical conductivity, omnidirectional flexibility, and a high Li storage capacity. We have unraveled the physical origin of the excellent stability, as well as the Li adsorption preferences of the lithiated heterostructure, based on a three-step analysis of the stability of the Li-adsorption processes. In addition, the BP/TiC2 vdW heterostructure can also be applied as the anode material for flexible Na-ion batteries because of its high Na storage capacity and strong Na binding. However, compared with Na adsorption, the capacity is higher, and the adsorption energy is more negative for Li adsorption. Our findings provide valuable insights into the exploration of a rich variety of vdW heterostructures for next-generation flexible energy storage devices.


van der Waals heterostructure omnidirectional stretchability Li adsorption flexible anode first-principles calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the National Key Research and Development Program of China (Materials Gnome Initiative), the National Natural Science Foundation of China (Nos. 61504028 and 61274005), the National Natural Science Foundation for Distinguished Young Scientists of China (No. 51225205), the Research Fund for the Doctoral Program of Higher Education of China (PhD supervisor) (No. 20133514110006), the Natural Science Foundation of Fujian Province (Nos. 2014J01176 and 2016J01216) and the Science Foundation of Department of Education of Fujian Province (No. JA15067).

Supplementary material

12274_2017_1531_MOESM1_ESM.pdf (916 kb)
Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications


  1. [1]
    Yu, J. L.; Lu, W. B.; Pei, S. P.; Gong, K.; Wang, L. Y.; Meng, L. H.; Huang, Y. D.; Smith, J. P.; Booksh, K. S.; Li, Q. W. et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 2016, 10, 5204–5211.CrossRefGoogle Scholar
  2. [2]
    Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.CrossRefGoogle Scholar
  3. [3]
    Hao, C. X.; Yang, B. C.; Wen, F. S.; Xiang, J. Y.; Li, L.; Wang, W. H.; Zeng, Z. M.; Xu, B.; Zhao, Z. S.; Liu, Z. Y. et al. Flexible all-solid-state supercapacitors based on liquidexfoliated black-phosphorus nanoflakes. Adv. Mater. 2016, 28, 3194–3201.CrossRefGoogle Scholar
  4. [4]
    Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.CrossRefGoogle Scholar
  5. [5]
    Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.CrossRefGoogle Scholar
  6. [6]
    Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.CrossRefGoogle Scholar
  7. [7]
    Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24.Google Scholar
  8. [8]
    Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.CrossRefGoogle Scholar
  9. [9]
    Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.CrossRefGoogle Scholar
  10. [10]
    Nagaraju, G.; Ko, Y. H.; Cha, S. M.; Im, S. H.; Yu, J. S. A facile one-step approach to hierarchically assembled coreshell- like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 2016, 9, 1507–1522.CrossRefGoogle Scholar
  11. [11]
    Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496–3504.CrossRefGoogle Scholar
  12. [12]
    Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.CrossRefGoogle Scholar
  13. [13]
    Hao, C. X.; Wen, F. S.; Xiang, J. Y.; Yuan, S. J.; Yang, B. C.; Li, L.; Wang, W. H.; Zeng, Z. M.; Wang, L. M.; Liu, Z. Y. et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv. Funct. Mater. 2016, 26, 2016–2024.CrossRefGoogle Scholar
  14. [14]
    Guo, Z. L.; Zhou, J.; Si, C.; Sun, Z. M. Flexible twodimensional Tin+1Cn(n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354.CrossRefGoogle Scholar
  15. [15]
    Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394.CrossRefGoogle Scholar
  16. [16]
    Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.CrossRefGoogle Scholar
  17. [17]
    Sa, B. S.; Sun, Z. M. Electron interactions and Dirac fermions in graphene-Ge2Sb2Te5 superlattices. J. Appl. Phys. 2014, 115, 233714.CrossRefGoogle Scholar
  18. [18]
    Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of threedimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.CrossRefGoogle Scholar
  19. [19]
    Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv. Mater. 2015, 27, 3687–3695.Google Scholar
  20. [20]
    Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Blue phosphorene/MS2 (M = Nb, Ta) heterostructures as promising flexible anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 13449–13457.CrossRefGoogle Scholar
  21. [21]
    Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H.-C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.CrossRefGoogle Scholar
  22. [22]
    Zhao, T. S.; Zhang, S. H.; Guo, Y. G.; Wang, Q. TiC2: A new two-dimensional sheet beyond MXenes. Nanoscale 2016, 8, 233–242.CrossRefGoogle Scholar
  23. [23]
    Wei, Q.; Peng, X. H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915.CrossRefGoogle Scholar
  24. [24]
    Sa, B. S.; Li, Y.-L.; Sun, Z. M.; Qi, J. S.; Wen, C. L.; Wu, B. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene. Nanotechnology 2015, 26, 215205.CrossRefGoogle Scholar
  25. [25]
    Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944–3953.CrossRefGoogle Scholar
  26. [26]
    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.CrossRefGoogle Scholar
  27. [27]
    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.CrossRefGoogle Scholar
  28. [28]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  29. [29]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  30. [30]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  31. [31]
    Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2010, 22, 022201.Google Scholar
  32. [32]
    Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.CrossRefGoogle Scholar
  33. [33]
    Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.CrossRefGoogle Scholar
  34. [34]
    Liao, J. M.; Sa, B. S.; Zhou, J.; Ahuja, R.; Sun, Z. M. Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. J. Phys. Chem. C 2014, 118, 17594–17599.CrossRefGoogle Scholar
  35. [35]
    Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 2016, 6, 31994.CrossRefGoogle Scholar
  36. [36]
    Liu, F.; Ming, P. B.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120.CrossRefGoogle Scholar
  37. [37]
    Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered directindirect band gap transition and its mechanism in twodimensional phosphorene. Phys. Rev. B 2014, 90, 085402.CrossRefGoogle Scholar
  38. [38]
    Xie, Y.; Dall’ Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithiumion batteries. ACS Nano 2014, 8, 9606–9615.CrossRefGoogle Scholar
  39. [39]
    Liu, Y. Y.; Merinov, B. V.; Goddard, W. A.. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739.CrossRefGoogle Scholar
  40. [40]
    Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Cryst. 1965, 19, 684–685.CrossRefGoogle Scholar
  41. [41]
    Sa, B. S.; Sun, Z. M.; Wu, B. The development of two dimensional group IV chalcogenides, blocks for van der Waals heterostructures. Nanoscale 2016, 8, 1169–1178.CrossRefGoogle Scholar
  42. [42]
    Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804.CrossRefGoogle Scholar
  43. [43]
    Sa, B. S.; Li, Y.-L.; Qi, J. S.; Ahuja, R.; Sun, Z. M. Strain engineering for phosphorene: The potential application as a photocatalyst. J. Phys. Chem. C 2014, 118, 26560–26568.CrossRefGoogle Scholar
  44. [44]
    Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.CrossRefGoogle Scholar
  45. [45]
    Sun, Z. M.; Ahuja, R.; Lowther, J. E. Mechanical properties of vanadium carbide and a ternary vanadium tungsten carbide. Solid State Commun. 2010, 150, 697–700.CrossRefGoogle Scholar
  46. [46]
    Sa, B. S.; Zhou, J.; Ahuja, R.; Sun, Z. M. First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections. Comput. Mater. Sci. 2014, 82, 66–69.CrossRefGoogle Scholar
  47. [47]
    Appalakondaiah, S.; Vaitheeswaran, G.; Lebè gue, S.; Christensen, N. E.; Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 2012, 86, 035105.CrossRefGoogle Scholar
  48. [48]
    Guo, Z. L.; Miao, N. H.; Zhou, J.; Sa, B. S.; Sun, Z. M. Strain-mediated Type-I/Type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 2017, 5, 978–984.CrossRefGoogle Scholar
  49. [49]
    Jiang, J. W.; Park, H. S. Negative Poisson’s ratio in singlelayer black phosphorus. Nat. Commun. 2014, 5, 4727.Google Scholar
  50. [50]
    Du, Y. C.; Maassen, J.; Wu, W. R.; Luo, Z.; Xu, X. F.; Ye, P. D. Auxetic black phosphorus: A 2D material with negative Poisson's ratio. Nano Lett. 2016, 16, 6701–6708.CrossRefGoogle Scholar
  51. [51]
    Li, J. W.; Medhekar, N. V.; Shenoy, V. B. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J. Phys. Chem. C 2013, 117, 15842–15848.CrossRefGoogle Scholar
  52. [52]
    Guo, Z. L.; Sa, B. S.; Pathak, B.; Zhou, J.; Ahuja, R.; Sun, Z. M. Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis. Int. J. Hydrogen Energy 2014, 39, 2042–2048.CrossRefGoogle Scholar
  53. [53]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefGoogle Scholar
  54. [54]
    Andrew, R. C.; Mapasha, R. E.; Ukpong, A. M.; Chetty, N. Mechanical properties of graphene and boronitrene. Phys. Rev. B 2012, 85, 125428.CrossRefGoogle Scholar
  55. [55]
    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.CrossRefGoogle Scholar
  56. [56]
    Li, Q. F.; Duan, C. G.; Wan, X. G.; Kuo, J. L. Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J. Phys. Chem. C 2015, 119, 8662–8670.CrossRefGoogle Scholar
  57. [57]
    Deng, J. K.; Chang, Z. Y.; Zhao, T.; Ding, X. D.; Sun, J.; Liu, J. Z. Electric field induced reversible phase transition in Li doped phosphorene: Shape memory effect and superelasticity. J. Am. Chem. Soc. 2016, 138, 4772–4778.CrossRefGoogle Scholar
  58. [58]
    Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465–2468.CrossRefGoogle Scholar
  59. [59]
    Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H. T.; Lebè gue, S.; Paier, J.; Vydrov, O. A.; Ángyá n, J. G. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 2009, 79, 155107.CrossRefGoogle Scholar
  60. [60]
    Zhou, L. J.; Hou, Z. F.; Wu, L. M. First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 2012, 116, 21780–21787.CrossRefGoogle Scholar
  61. [61]
    Tritsaris, G. A.; Kaxiras, E.; Meng, S.; Wang, E. G. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013, 13, 2258–2263.CrossRefGoogle Scholar
  62. [62]
    Guo, G.-C.; Wang, D.; Wei, X.-L.; Zhang, Q.; Liu, H.; Lau, W.-M.; Liu, L.-M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 2015, 6, 5002–5008.CrossRefGoogle Scholar
  63. [63]
    Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Multiscale Computational Materials Facility, College of Materials Science and EngineeringFuzhou UniversityFuzhouChina
  2. 2.Key Laboratory of Eco-Materials Advanced Technology (Fuzhou University)Fujian Province UniversityFuzhouChina
  3. 3.School of Materials Science and Engineering, and Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary ScienceBeihang UniversityBeijingChina
  4. 4.Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations