Nano Research

, Volume 10, Issue 9, pp 3113–3123 | Cite as

Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy

  • Minhuan Lan
  • Shaojing Zhao
  • Zhenyu Zhang
  • Li Yan
  • Liang Guo
  • Guangle Niu
  • Jinfeng Zhang
  • Junfang Zhao
  • Hongyan Zhang
  • Pengfei Wang
  • Guangyu Zhu
  • Chun-Sing Lee
  • Wenjun Zhang
Research Article

Abstract

C dots (CDs) have shown great potential in bioimaging and phototherapy. However, it is challenging to manipulate their fluorescent properties and therapeutic efficacy to satisfy the requirements for clinic applications. In this study, we prepared S, Se-codoped CDs via a hydrothermal method and demonstrated that the doping resulted in excitation wavelength-independent near-infrared (NIR) emissions of the CDs, with peaks at 731 and 820 nm. Significantly, the CDs exhibited a photothermal conversion efficiency of ~58.2%, which is the highest reported value for C nanostructures and is comparable to that of Au nanostructures. Moreover, the CDs had a large two-photon absorption cross section (~30,045 GM), which allowed NIR emissions and the photothermal conversion of the CDs through the two-photon excitation (TPE) mechanism. In vitro and in vivo tests suggested that CDs can function as new multifunctional phototheranostic agents for the TPE fluorescence imaging and photothermal therapy of cancer cells.

Keywords

carbon dots phototheranostic agent two-photon excitation NIR emission photothermal conversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1528_MOESM1_ESM.pdf (2.4 mb)
Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy

References

  1. [1]
    Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885.CrossRefGoogle Scholar
  2. [2]
    Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.CrossRefGoogle Scholar
  3. [3]
    Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Nanomaterials for theranostics: Recent advances and future challenges. Chem. Rev. 2015, 115, 327–394.CrossRefGoogle Scholar
  4. [4]
    Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839–2857.CrossRefGoogle Scholar
  5. [5]
    Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.CrossRefGoogle Scholar
  6. [6]
    Yuan, Y. Y.; Zhang, C. J.; Xu, S. D.; Liu, B. A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells. Chem. Sci. 2016, 7, 1862–1866.CrossRefGoogle Scholar
  7. [7]
    Yuan, Y. Y.; Zhang, C. J.; Kwok, R. T. K.; Xu, S. D.; Zhang, R. Y.; Wu, J. E.; Tang, B. Z.; Liu, B. Light-up probe for targeted and activatable photodynamic therapy with realtime in situ reporting of sensitizer activation and therapeutic responses. Adv. Funct. Mater. 2015, 25, 6586–6595.CrossRefGoogle Scholar
  8. [8]
    Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541–2550.CrossRefGoogle Scholar
  9. [9]
    Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.CrossRefGoogle Scholar
  10. [10]
    Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.CrossRefGoogle Scholar
  11. [11]
    Pang, X. J.; Wang, J. P.; Tan, X. X.; Guo, F.; Lei, M. Z.; Ma, M.; Yu, M.; Tan, F. P.; Li, N. Dual-modal imagingguided theranostic nanocarriers based on indocyanine green and mTOR inhibitor rapamycin. ACS Appl. Mater. Interfaces 2016, 8, 13819–13829.CrossRefGoogle Scholar
  12. [12]
    Shi, C. H.; Wu, J. B.; Pan, D. F. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt. 2016, 21, 050901.CrossRefGoogle Scholar
  13. [13]
    Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed. 2014, 53, 1756–1789.CrossRefGoogle Scholar
  14. [14]
    Xu, H.; Li, Q.; Wang, L. H.; He, Y.; Shi, J. Y.; Tang, B.; Fan, C. H. Nanoscale optical probes for cellular imaging. Chem. Soc. Rev. 2014, 43, 2650–2661.CrossRefGoogle Scholar
  15. [15]
    Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.Google Scholar
  16. [16]
    Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 2015, 27, 4169–4177.CrossRefGoogle Scholar
  17. [17]
    Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y. P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.CrossRefGoogle Scholar
  18. [18]
    Morimoto, Y.; Horie, M.; Kobayashi, N.; Shinohara, N.; Shimada, M. Inhalation toxicity assessment of carbon-based nanoparticles. Acc. Chem. Res. 2013, 46, 770–781.CrossRefGoogle Scholar
  19. [19]
    Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.CrossRefGoogle Scholar
  20. [20]
    Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.CrossRefGoogle Scholar
  21. [21]
    Zeng, J.; Goldfeld, D.; Xia, Y. N. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem., Int. Ed. 2013, 52, 4169–4173.CrossRefGoogle Scholar
  22. [22]
    Ji, M. W.; Xu, M.; Zhang, W.; Yang, Z. Z.; Huang, L.; Liu, J. J.; Zhang, Y.; Gu, L.; Yu, Y. X.; Hao, W. C. et al. Structurally well-defined Au@Cu2-xS core–shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv. Mater. 2016, 28, 3094–3101.CrossRefGoogle Scholar
  23. [23]
    Song, J. B.; Wang, F.; Yang, X. Y.; Ning, B.; Harp, M. G.; Culp, S. H.; Hu, S.; Huang, P.; Nie, L. M.; Chen, J. Y. et al. Gold nanoparticle coated carbon nanotube ring with enhanced Raman scattering and photothermal conversion property for theranostic applications. J. Am. Chem. Soc. 2016, 138, 7005–7015.CrossRefGoogle Scholar
  24. [24]
    Hu, Y.; Wang, R. Z.; Wang, S. G.; Ding, L.; Li, J. C.; Luo, Y.; Wang, X. L.; Shen, M. W.; Shi, X. Y. Multifunctional Fe3O4 @ Au core/shell nanostars: A unique platform for multimode imaging and photothermal therapy of tumors. Sci. Rep. 2016, 6, 28325.CrossRefGoogle Scholar
  25. [25]
    Li, D.; Han, D.; Qu, S. N.; Liu, L.; Jing, P. T.; Zhou, D.; Ji, W. Y.; Wang, X. Y.; Zhang, T. F.; Shen, D. Z. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light: Sci. Appl. 2016, 5, e16120.CrossRefGoogle Scholar
  26. [26]
    Hu, S. L.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem., Int. Ed. 2015, 54, 2970–2974.CrossRefGoogle Scholar
  27. [27]
    Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.CrossRefGoogle Scholar
  28. [28]
    Wu, L.; Luderer, M.; Yang, X. X.; Swain, C.; Zhang, H. Y.; Nelson, K.; Stacy, A. J.; Shen, B. Z.; Lanza, G. M.; Pan, D. J. Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 2013, 3, 677–686.CrossRefGoogle Scholar
  29. [29]
    Shen, Y. Z.; Shuhendler, A. J.; Ye, D. J.; Yu, J. J.; Chen, H. Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6725–6741.CrossRefGoogle Scholar
  30. [30]
    Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.CrossRefGoogle Scholar
  31. [31]
    Fowley, C.; McHale, A. P.; McCaughan, B.; Fraix, A.; Sortino, S.; Callan, J. F. Carbon quantum dot-NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors. Chem. Commun. 2015, 51, 81–84.CrossRefGoogle Scholar
  32. [32]
    Wang, J.; Zhang, Z. H.; Zha, S.; Zhu, Y. Y.; Wu, P. Y.; Ehrenberg, B.; Chen, J. Y. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density. Biomaterials 2014, 35, 9372–9381.CrossRefGoogle Scholar
  33. [33]
    Li, J. L.; Bao, H. C.; Hou, X. L.; Sun, L.; Wang, X. G.; Gu, M. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angew. Chem., Int. Ed. 2012, 51, 1830–1834.CrossRefGoogle Scholar
  34. [34]
    Lan, M. H.; Wu, J. S.; Liu, W. M.; Zhang, W. J.; Ge, J. C.; Zhang, H. Y.; Sun, J. Y.; Zhao, W. W.; Wang, P. F. Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. J. Am. Chem. Soc. 2012, 134, 6685–6694.CrossRefGoogle Scholar
  35. [35]
    Guo, X.; Wang, C. F.; Yu, Z. Y.; Chen, L.; Chen, S. Facile access to versatile fluorescent carbon dots toward lightemitting diodes. Chem. Commun. 2012, 48, 2692–2694.CrossRefGoogle Scholar
  36. [36]
    Kozák, O.; Sudolská, M.; Pramanik, G.; Cígler, P.; Otyepka, M.; Zboril, R. Photoluminescent carbon nanostructures. Chem. Mater. 2016, 28, 4085–4128.CrossRefGoogle Scholar
  37. [37]
    Yang, S. W.; Sun, J.; Li, X. B.; Zhou, W.; Wang, Z. Y.; He, P.; Ding, G. Q.; Xie, X. M.; Kang, Z. H.; Jiang, M. H. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014, 2, 8660–8667.CrossRefGoogle Scholar
  38. [38]
    Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl. Chem. 2011, 83, 2213–2228.CrossRefGoogle Scholar
  39. [39]
    Yang, F.; Zhao, M. L.; Zheng, B. Z.; Xiao, D.; Wu, L.; Guo, Y. Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J. Mater. Chem. 2012, 22, 25471–25479.CrossRefGoogle Scholar
  40. [40]
    Zhao, S. J.; Lan, M. H.; Zhu, X. Y.; Xue, H. T.; Ng, T.-W.; Meng, X. M.; Lee, C.-S.; Wang, P. F.; Zhang, W. J. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces 2015, 7, 17054–17060.CrossRefGoogle Scholar
  41. [41]
    Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991.Google Scholar
  42. [42]
    Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. J. Mol. Phys. 1970, 18, 145–164.CrossRefGoogle Scholar
  43. [43]
    Lan, M. H.; Zhang, J. F.; Zhu, X. Y.; Wang, P. F.; Chen, X. F.; Lee, C. S.; Zhang, W. J. Highly stable organic fluorescent nanorods for living-cell imaging. Nano Res. 2015, 8, 2380–2389.CrossRefGoogle Scholar
  44. [44]
    Sharma, A.; Gadly, T.; Gupta, A.; Ballal, A.; Ghosh, S. K.; Kumbhakar, M. Origin of excitation dependent fluorescence in carbon nanodots. J. Phys. Chem. Lett. 2016, 7, 3695–3702.CrossRefGoogle Scholar
  45. [45]
    Xu, Q. F.; Zhou, Q.; Hua, Z.; Xue, Q.; Zhang, C. F.; Wang, X. Y.; Pan, D. Y.; Xiao, M. Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano 2013, 7, 10654–10661.CrossRefGoogle Scholar
  46. [46]
    Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K. Timeresolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett. 2015, 15, 8300–8305.CrossRefGoogle Scholar
  47. [47]
    Singh, S.; Aggarwal, A.; Bhupathiraju, N. V. S. D. K.; Arianna, G.; Tiwari, K.; Drain, C. M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 2015, 115, 10261–10306.CrossRefGoogle Scholar
  48. [48]
    Pu, S. C.; Yang, M. J.; Hsu, C. C.; Lai, C. W.; Hsieh, C. C.; Lin, S. H.; Cheng, Y. M.; Chou, P. T. The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. Small 2006, 2, 1308–1313.CrossRefGoogle Scholar
  49. [49]
    Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441.CrossRefGoogle Scholar
  50. [50]
    Kong, B.; Zhu, A. W.; Ding, C. Q.; Zhao, X. M.; Li, B.; Tian, Y. Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 2012, 24, 5844–5848.CrossRefGoogle Scholar
  51. [51]
    Peng, X. J.; Yang, Z. G.; Wang, J. Y.; Fan, J. L.; He, Y. X.; Song, F. L.; Wang, B. S.; Sun, S. G.; Qu, J. L.; Qi, J. et al. Fluorescence ratiometry and fluorescence lifetime imaging: Using a single molecular sensor for dual mode imaging of cellular viscosity. J. Am. Chem. Soc. 2011, 133, 6626–6635.CrossRefGoogle Scholar
  52. [52]
    Fan, M.; Yao, J.; Tung, C.-H. Molecular Photochemistry and Materials Science; Chinese Science Publishing & Media Ltd.: Beijing, 2008. (in Chinese)Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Minhuan Lan
    • 1
  • Shaojing Zhao
    • 1
  • Zhenyu Zhang
    • 1
  • Li Yan
    • 1
  • Liang Guo
    • 2
  • Guangle Niu
    • 2
  • Jinfeng Zhang
    • 1
  • Junfang Zhao
    • 2
  • Hongyan Zhang
    • 2
  • Pengfei Wang
    • 2
    • 3
  • Guangyu Zhu
    • 4
  • Chun-Sing Lee
    • 1
  • Wenjun Zhang
    • 1
  1. 1.Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials ScienceCity University of Hong KongHong KongChina
  2. 2.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  3. 3.School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Department of Biology and ChemistryCity University of Hong KongHong KongChina

Personalised recommendations