Nano Research

, Volume 10, Issue 9, pp 3103–3112 | Cite as

Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst

  • Yingying Xu
  • Sibin Duan
  • Haoyi Li
  • Ming Yang
  • Shijie Wang
  • Xun Wang
  • Rongming Wang
Research Article


We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.


oxygen evolution reaction nickel phosphide core/shell nanoparticles interfacial coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1527_MOESM1_ESM.pdf (1.1 mb)
Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst


  1. [1]
    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.CrossRefGoogle Scholar
  2. [2]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  3. [3]
    Singh, R. N.; Mishra, D.; Anindita; Sinha, A. S. K.; Singh, A. Novel electrocatalysts for generating oxygen from alkaline water electrolysis. Electrochem. Commun. 2007, 9, 1369–1373.CrossRefGoogle Scholar
  4. [4]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.CrossRefGoogle Scholar
  5. [5]
    Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440–1447.CrossRefGoogle Scholar
  6. [6]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  7. [7]
    Mattos-Costa, F. I.; de Lima-Neto, P.; Machado, S. A. S.; Avaca, L. A. Characterisation of surfaces modified by sol-gel derived RuxIr1–xO2 coatings for oxygen evolution in acid medium. Electrochim. Acta 1998, 44, 1515–1523.CrossRefGoogle Scholar
  8. [8]
    Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356–3426.CrossRefGoogle Scholar
  9. [9]
    Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.CrossRefGoogle Scholar
  10. [10]
    Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.CrossRefGoogle Scholar
  11. [11]
    Cao, X. Y.; Wang, H. N.; Lu, S. F.; Chen, S.; Xiang, Y. An Ni–P/C electro-catalyst with improved activity for the carbohydrazide oxidation reaction. RSC Adv. 2016, 6, 91956–91959.CrossRefGoogle Scholar
  12. [12]
    Wang, H. N.; Cao, D.; Xiang, Y.; Liang, D. W.; Lu, S. F. Novel Pd-decorated amorphous Ni–B/C catalysts with enhanced oxygen reduction reaction activities in alkaline media. RSC Adv. 2014, 4, 51126–51132.CrossRefGoogle Scholar
  13. [13]
    Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobaltphosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.CrossRefGoogle Scholar
  14. [14]
    Song, H.; Dai, M.; Song, H. L.; Wan, X.; Xu, X. W.; Jin, Z. S. A solution-phase synthesis of supported Ni2P catalysts with high activity for hydrodesulfurization of dibenzothiophene. J. Mol. Catal. A-Chem. 2014, 385, 149–159.CrossRefGoogle Scholar
  15. [15]
    Oyama, S. T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. J. Catal. 2003, 216, 343–352.CrossRefGoogle Scholar
  16. [16]
    Mi, K.; Ni, Y. H.; Hong, J. M. Solvent-controlled syntheses of Ni12P5 and Ni2P nanocrystals and photocatalytic property comparison. J. Phys. Chem. Solids 2011, 72, 1452–1456.CrossRefGoogle Scholar
  17. [17]
    Ni, Y. H.; Liao, K. M.; Li, J. In situ template route for synthesis of porous Ni12P5 superstructures and their applications in environmental treatments. CrystEngComm 2010, 12, 1568–1575.CrossRefGoogle Scholar
  18. [18]
    Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.CrossRefGoogle Scholar
  19. [19]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.CrossRefGoogle Scholar
  20. [20]
    Paseka, I. Hydrogen evolution reaction on Ni-P alloys: The internal stress and the activities of electrodes. Electrochim. Acta 2008, 53, 4537–4543.CrossRefGoogle Scholar
  21. [21]
    Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 2014, 8, 8121–8129.CrossRefGoogle Scholar
  22. [22]
    Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.CrossRefGoogle Scholar
  23. [23]
    Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.CrossRefGoogle Scholar
  24. [24]
    Wu, J. B.; Li, P. P.; Pan, Y. T.; Warren, S.; Yin, X.; Yang, H. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 2012, 41, 8066–8074.CrossRefGoogle Scholar
  25. [25]
    Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 2010, 327, 1634–1638.CrossRefGoogle Scholar
  26. [26]
    Duan, S. B.; Wang, R. M. Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: In situ synthesis, evolution and supercapacitor properties. NPG Asia Mater. 2014, 6, e122.CrossRefGoogle Scholar
  27. [27]
    Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. 25th anniversary article: Exploring nanoscaled matter from speciation to phase diagrams: Metal phosphide nanoparticles as a case of study. Adv. Mater. 2014, 26, 371–389.CrossRefGoogle Scholar
  28. [28]
    Franke, R. X-ray absorption and photoelectron spectroscopy investigation of binary nickel phosphides. Spectrochim. Acta A-Mol. Biomol. Spectrosc. 1997, 53, 933–941.CrossRefGoogle Scholar
  29. [29]
    Wu, S. K.; Lai, P. C.; Lin, Y. C. Atmospheric hydrodeoxygenation of guaiacol over nickel phosphide catalysts: Effect of phosphorus composition. Catal. Lett. 2014, 144, 878–889.CrossRefGoogle Scholar
  30. [30]
    Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381–388.CrossRefGoogle Scholar
  31. [31]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  32. [32]
    Su, X. R.; Xu, Y. Y.; Liu, J. L.; Wang, R. M. Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. CrystEngComm 2015, 17, 4859–4864.CrossRefGoogle Scholar
  33. [33]
    Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.CrossRefGoogle Scholar
  34. [34]
    Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.CrossRefGoogle Scholar
  35. [35]
    Hu, J. M.; Zhang, J. Q.; Cao, C. N. Oxygen evolution reaction on IrO2-based DSA® type electrodes: Kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 2004, 29, 791–797.CrossRefGoogle Scholar
  36. [36]
    Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.Google Scholar
  37. [37]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  38. [38]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  39. [39]
    Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.CrossRefGoogle Scholar
  40. [40]
    Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.Google Scholar
  41. [41]
    Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yingying Xu
    • 1
  • Sibin Duan
    • 1
  • Haoyi Li
    • 2
  • Ming Yang
    • 3
  • Shijie Wang
    • 3
  • Xun Wang
    • 2
  • Rongming Wang
    • 1
  1. 1.Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina
  3. 3.Institute of Materials Research and EngineeringA*STARSingaporeSingapore

Personalised recommendations