Nano Research

, Volume 10, Issue 9, pp 3103–3112 | Cite as

Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst

  • Yingying Xu
  • Sibin Duan
  • Haoyi Li
  • Ming Yang
  • Shijie Wang
  • Xun Wang
  • Rongming Wang
Research Article


We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.


oxygen evolution reaction nickel phosphide core/shell nanoparticles interfacial coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 11674023, 51371015, 51331002, and 51501004), the Beijing Municipality Natural Science Foundation (No. 2142018), and the Fundamental Research Funds for the Central Universities (No. FRF-BR-15-023A). We would like to thank Prof. Feng Yuanping at Centre for Advanced 2D Materials and Graphene Research of NUS for discussions on computing results. We also thank the National Supercomputing Centre Singapore for providing the computing resource.

Supplementary material

12274_2017_1527_MOESM1_ESM.pdf (1.1 mb)
Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst


  1. [1]
    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.CrossRefGoogle Scholar
  2. [2]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  3. [3]
    Singh, R. N.; Mishra, D.; Anindita; Sinha, A. S. K.; Singh, A. Novel electrocatalysts for generating oxygen from alkaline water electrolysis. Electrochem. Commun. 2007, 9, 1369–1373.CrossRefGoogle Scholar
  4. [4]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.CrossRefGoogle Scholar
  5. [5]
    Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1440–1447.CrossRefGoogle Scholar
  6. [6]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  7. [7]
    Mattos-Costa, F. I.; de Lima-Neto, P.; Machado, S. A. S.; Avaca, L. A. Characterisation of surfaces modified by sol-gel derived RuxIr1–xO2 coatings for oxygen evolution in acid medium. Electrochim. Acta 1998, 44, 1515–1523.CrossRefGoogle Scholar
  8. [8]
    Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356–3426.CrossRefGoogle Scholar
  9. [9]
    Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.CrossRefGoogle Scholar
  10. [10]
    Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.CrossRefGoogle Scholar
  11. [11]
    Cao, X. Y.; Wang, H. N.; Lu, S. F.; Chen, S.; Xiang, Y. An Ni–P/C electro-catalyst with improved activity for the carbohydrazide oxidation reaction. RSC Adv. 2016, 6, 91956–91959.CrossRefGoogle Scholar
  12. [12]
    Wang, H. N.; Cao, D.; Xiang, Y.; Liang, D. W.; Lu, S. F. Novel Pd-decorated amorphous Ni–B/C catalysts with enhanced oxygen reduction reaction activities in alkaline media. RSC Adv. 2014, 4, 51126–51132.CrossRefGoogle Scholar
  13. [13]
    Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobaltphosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.CrossRefGoogle Scholar
  14. [14]
    Song, H.; Dai, M.; Song, H. L.; Wan, X.; Xu, X. W.; Jin, Z. S. A solution-phase synthesis of supported Ni2P catalysts with high activity for hydrodesulfurization of dibenzothiophene. J. Mol. Catal. A-Chem. 2014, 385, 149–159.CrossRefGoogle Scholar
  15. [15]
    Oyama, S. T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. J. Catal. 2003, 216, 343–352.CrossRefGoogle Scholar
  16. [16]
    Mi, K.; Ni, Y. H.; Hong, J. M. Solvent-controlled syntheses of Ni12P5 and Ni2P nanocrystals and photocatalytic property comparison. J. Phys. Chem. Solids 2011, 72, 1452–1456.CrossRefGoogle Scholar
  17. [17]
    Ni, Y. H.; Liao, K. M.; Li, J. In situ template route for synthesis of porous Ni12P5 superstructures and their applications in environmental treatments. CrystEngComm 2010, 12, 1568–1575.CrossRefGoogle Scholar
  18. [18]
    Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.CrossRefGoogle Scholar
  19. [19]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.CrossRefGoogle Scholar
  20. [20]
    Paseka, I. Hydrogen evolution reaction on Ni-P alloys: The internal stress and the activities of electrodes. Electrochim. Acta 2008, 53, 4537–4543.CrossRefGoogle Scholar
  21. [21]
    Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 2014, 8, 8121–8129.CrossRefGoogle Scholar
  22. [22]
    Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.CrossRefGoogle Scholar
  23. [23]
    Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.CrossRefGoogle Scholar
  24. [24]
    Wu, J. B.; Li, P. P.; Pan, Y. T.; Warren, S.; Yin, X.; Yang, H. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 2012, 41, 8066–8074.CrossRefGoogle Scholar
  25. [25]
    Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 2010, 327, 1634–1638.CrossRefGoogle Scholar
  26. [26]
    Duan, S. B.; Wang, R. M. Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: In situ synthesis, evolution and supercapacitor properties. NPG Asia Mater. 2014, 6, e122.CrossRefGoogle Scholar
  27. [27]
    Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. 25th anniversary article: Exploring nanoscaled matter from speciation to phase diagrams: Metal phosphide nanoparticles as a case of study. Adv. Mater. 2014, 26, 371–389.CrossRefGoogle Scholar
  28. [28]
    Franke, R. X-ray absorption and photoelectron spectroscopy investigation of binary nickel phosphides. Spectrochim. Acta A-Mol. Biomol. Spectrosc. 1997, 53, 933–941.CrossRefGoogle Scholar
  29. [29]
    Wu, S. K.; Lai, P. C.; Lin, Y. C. Atmospheric hydrodeoxygenation of guaiacol over nickel phosphide catalysts: Effect of phosphorus composition. Catal. Lett. 2014, 144, 878–889.CrossRefGoogle Scholar
  30. [30]
    Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381–388.CrossRefGoogle Scholar
  31. [31]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.CrossRefGoogle Scholar
  32. [32]
    Su, X. R.; Xu, Y. Y.; Liu, J. L.; Wang, R. M. Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. CrystEngComm 2015, 17, 4859–4864.CrossRefGoogle Scholar
  33. [33]
    Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.CrossRefGoogle Scholar
  34. [34]
    Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.CrossRefGoogle Scholar
  35. [35]
    Hu, J. M.; Zhang, J. Q.; Cao, C. N. Oxygen evolution reaction on IrO2-based DSA® type electrodes: Kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 2004, 29, 791–797.CrossRefGoogle Scholar
  36. [36]
    Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.Google Scholar
  37. [37]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  38. [38]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  39. [39]
    Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.CrossRefGoogle Scholar
  40. [40]
    Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.Google Scholar
  41. [41]
    Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yingying Xu
    • 1
  • Sibin Duan
    • 1
  • Haoyi Li
    • 2
  • Ming Yang
    • 3
  • Shijie Wang
    • 3
  • Xun Wang
    • 2
  • Rongming Wang
    • 1
  1. 1.Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina
  3. 3.Institute of Materials Research and EngineeringA*STARSingaporeSingapore

Personalised recommendations