Nano Research

, Volume 10, Issue 9, pp 3092–3102 | Cite as

Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries

Research Article

Abstract

Rechargeable lithium batteries are attractive power sources for electronic devices and are being aggressively developed for vehicular use. Nevertheless, problems with their safety and reliability must be solved for the large-scale use of lithium batteries in transportation and grid-storage applications. In this study, a unique hybrid solid-state electrolyte composed of an ionic liquid electrolyte (LiTFSI/Pyr14TFSI) and BaTiO3 nanosize ceramic particles was prepared without a polymer. The electrolyte exhibited high thermal stability, a wide electrochemical window, good ionic conductivity of 1.3 × 10−3 S·cm−1 at 30 °C, and a remarkably high lithium-ion transference number of 0.35. The solid-state LiFePO4 cell exhibited the best electrochemical properties among the reported solid-state batteries, along with a reasonable rate capability. Li/LiCoO2 cells prepared using this nanocomposite solid electrolyte exhibited high performance at both room temperature and a high temperature, confirming their potential as lithium batteries with enhanced safety and a wide range of operating temperatures.

Keywords

nanocomposition solidified ionic liquid shell charge space safety lithium battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1526_MOESM1_ESM.pdf (3.1 mb)
Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries

References

  1. [1]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  2. [2]
    Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540.CrossRefGoogle Scholar
  3. [3]
    Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Flexible and ionconducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447–454.CrossRefGoogle Scholar
  4. [4]
    Orendorff, C. J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interface 2012, 21, 61–65.CrossRefGoogle Scholar
  5. [5]
    Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem 2015, 8, 2154–2175.CrossRefGoogle Scholar
  6. [6]
    Nugent, J. L.; Moganty, S. S.; Archer, L. A. Nanoscale organic hybrid electrolytes. Adv. Mater. 2010, 22, 3677–3680.CrossRefGoogle Scholar
  7. [7]
    Galinski, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580.CrossRefGoogle Scholar
  8. [8]
    Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.CrossRefGoogle Scholar
  9. [9]
    Sakaebe, H.; Matsumoto, H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide (PP13–TFSI)–novel electrolyte base for Li battery. Electrochem. Commun. 2003, 5, 594–598.Google Scholar
  10. [10]
    Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate roomtemperature ionic liquids. J. Phys. Chem. B 2001, 105, 4603–4610.CrossRefGoogle Scholar
  11. [11]
    Fraser, K. J.; Izgorodina, E. I.; Forsyth, M.; Scott, J. L.; MacFarlane, D. R. Liquids intermediate between “molecular” and “ionic” liquids: Liquid ion pairs?. Chem. Commun. 2007, 3817–3819.Google Scholar
  12. [12]
    Kim, J. K.; Matic, A.; Ahn, J. H.; Jacobsson, P. An imidazolium based ionic liquid electrolyte for lithium batteries. J. Power Sources 2010, 195, 7639–7643.CrossRefGoogle Scholar
  13. [13]
    Appetecchi, G. B.; Montanino, M.; Zane, D.; Carewska, M.; Alessandrini, F.; Passerini, S. Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl- N-methyl-pyrrolidinium bis (trifluoromethanesulfonyl) imide ionic liquids. Electrochim. Acta 2009, 54, 1325–1332.CrossRefGoogle Scholar
  14. [14]
    McFarlane, D. R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M. High conductivity molten salts based on the imide ion. Electrochim. Acta 2000, 45, 1271–1278.CrossRefGoogle Scholar
  15. [15]
    Shin, J. H.; Henderson, W. A.; Appetecchi, G. B.; Alessandrini, F.; Passerini, S. Recent developments in the ENEA lithium metal battery project. Electrochim. Acta 2005, 50, 3859–3865.CrossRefGoogle Scholar
  16. [16]
    Lewandowski, A.; Swiderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601–609.CrossRefGoogle Scholar
  17. [17]
    Kim, J. K.; Niedzicki, L.; Scheers, J.; Shin, C. R.; Lim, D. H.; Wieczorek, W.; Jacobsson, P.; Ahn, J. H.; Matic, A.; Jacobsson, P. Characterization of N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide-based polymer electrolytes for high safety lithium batteries. J. Power Sources 2013, 224, 93–98.CrossRefGoogle Scholar
  18. [18]
    Frö mling, T.; Kunze, M.; Schönhoff, M.; Sundermeyer, J.; Roling, B. Enhanced lithium transference numbers in ionic liquid electrolytes. J. Phys. Chem. B 2008, 112, 12985–12990.CrossRefGoogle Scholar
  19. [19]
    Saito, Y.; Umecky, T.; Niwa, J.; Sakai, T.; Maeda, S. Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J. Phys. Chem. B, 2007, 111, 11794–11802.CrossRefGoogle Scholar
  20. [20]
    Hayamizu, K.; Aihara, Y.; Nakagawa, H.; Nukuda, T.; Price, W. S. Ionic conduction and ion diffusion in binary roomtemperature ionic liquids composed of [emim][BF4] and LiBF4. J. Phys. Chem. B 2004, 108, 19527–19532.CrossRefGoogle Scholar
  21. [21]
    Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926–3933.CrossRefGoogle Scholar
  22. [22]
    Kumar, B. Heterogeneous electrolytes: Variables for and uncertainty in conductivity measurements. J. Power Sources 2008, 179, 401–406.CrossRefGoogle Scholar
  23. [23]
    Bhattacharyya, A. J.; Maier, J.; Bock, R.; Lange, F. F. New class of soft matter electrolytes obtained via heterogeneous doping: Percolation effects in “soggy sand” electrolytes. Solid State Ionics 2006, 177, 2565–2568.CrossRefGoogle Scholar
  24. [24]
    Osinska, M.; Walkowiak, M.; Zalewska, A.; Jesionowski, T. Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J. Membrane Sci. 2009, 326, 582–588.CrossRefGoogle Scholar
  25. [25]
    Kim, J. K.; Scheers, J.; Park, T. J.; Kim, Y. Superior ionconducting hybrid solid electrolyte for all-solid-state batteries. ChemSusChem 2015, 8, 636–641.CrossRefGoogle Scholar
  26. [26]
    Blanga, R.; Golodnitsky, D.; Ardel, G.; Freedman, K.; Gladkich, A.; Rosenberg, Y.; Nathan M.; Peled, E. Quasisolid polymer-in-ceramic membrane for Li-ion batteries. Electrochim. Acta 2013, 114, 325–333.CrossRefGoogle Scholar
  27. [27]
    Ito, S.; Unemoto, A.; Ogawa, H.; Tomai, T.; Honma, I. Application of quasi-solid-state silica nanoparticles–ionic liquid composite electrolytes to all-solid-state lithium secondary battery. J. Power Sources 2012, 208, 271–275.CrossRefGoogle Scholar
  28. [28]
    Hori, M.; Aoki, Y.; Maeda, S.; Tatsumi, R.; Hayakawa, S. Thermal stability of ionic liquids as an electrolyte for lithium-ion batteries. ECS Trans. 2010, 25, 147–153.CrossRefGoogle Scholar
  29. [29]
    Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M. Flammability of Li-ion battery electrolytes: Flash point and selfextinguishing time measurements. J. Electrochem. Soc. 2015, 162, A3084–A3097.CrossRefGoogle Scholar
  30. [30]
    Bloise, A. C.; Donoso, J. P.; Magon, C. J.; Rosario, A. V.; Pereira, E. C. NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim. Acta 2003, 48, 2239–2246.Google Scholar
  31. [31]
    Bhattacharyya, A. J.; Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”. Adv. Mater. 2004, 16, 811–814.CrossRefGoogle Scholar
  32. [32]
    Asl, N. M.; Keith, J.; Lim, C.; Zhu, L. K.; Kim, Y. Inorganic solid/organic liquid hybrid electrolyte for use in Li-ion battery. Electrochim. Acta 2012, 79, 8–16.CrossRefGoogle Scholar
  33. [33]
    Inda, Y.; Katoh, T.; Baba, M. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics. J. Power Sources. 2007, 174, 741–744.CrossRefGoogle Scholar
  34. [34]
    Lassè gues, J. C.; Grondin, J.; Aupetit, C.; Johansson, P. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. J. Phys. Chem. A 2009, 113, 305–314.CrossRefGoogle Scholar
  35. [35]
    Kim, J. K.; Lim, D. H.; Scheers, J.; Pitawala, J.; Wilken, S.; Johansson, P.; Ahn, J. H.; Matic, A.; Jacobsson, P. Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) imide based electrolytes as a function of lithium Bis(trifluoromethanesulfonyl) imide doping. J. Korean Electrochem. Soc. 2011, 14, 92–97.CrossRefGoogle Scholar
  36. [36]
    Duluard, S.; Grondin, J.; Bruneel, J. L.; Pianet, I.; Grélard, A.; Campet, G.; Delville, M. H.; Lassègues, J. C. Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid. J. Raman Spectrosc. 2008, 39, 627–632.CrossRefGoogle Scholar
  37. [37]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  38. [38]
    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.CrossRefGoogle Scholar
  39. [39]
    Kühnel, R. S.; Lübke, M.; Winter, M.; Passerini, S.; Balducci, A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J. Power Sources 2012, 214, 178–184.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Energy & Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  2. 2.Department of Solar & Energy EngineeringCheongju UniversityCheongju, ChungbukRepublic of Korea
  3. 3.School of Energy & Chemical Engineering and Research Institute for Green Energy Convergence TechnologyGyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations