Nano Research

, Volume 10, Issue 9, pp 3068–3076 | Cite as

An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells

Research Article


Accurate regulation of cellular zinc signaling is imperative to decipher underlying zinc functions and develop new therapeutic agents. However, the ability to modulate zinc in a spatiotemporal manner remains elusive. We herein report an intelligent spiropyran-upconversion (SP-UCNPs) based nanosystem that enables near-infrared (NIR) light-controlled zinc release at precise times and locations. The magnitude of zinc release can be simply manipulated by varying the duration of NIR irradiation. Moreover, the utilization of NIR light not only showed little damage to cells but also significantly improved penetration depth. By evaluating activity of a model protein, phosphatase 2A, we further validated zinc signaling activation. Importantly, our strategy may be broadly applicable to other types of metal ions, like the ubiquitous second messenger calcium. More importantly, our strategy can potentially enable the precise control of specific signaling pathways of metal ions while minimizing cellular damage, facilitating the advanced manipulation of cellular dynamics.


nanocarrier zinc upconversion spiropyran cellular manipulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Prof. Zhenxin Wang and Lina Ma for the cellular imaging experiments. We acknowledge financial support the National Natural Science Foundation of China (Nos. 21210002, 21431007, 21533008, and 81502277).

Supplementary material

12274_2017_1522_MOESM1_ESM.pdf (1.8 mb)
An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells


  1. [1]
    Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 2013, 10, 219–226.CrossRefGoogle Scholar
  2. [2]
    Peng, J. J.; Xu, W.; Teoh, C. L.; Han, S. Y.; Kim, B.; Samanta, A.; Er, J. C.; Wang, L.; Yuan, L.; Liu, X. G. et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc. 2015, 137, 2336–2342.CrossRefGoogle Scholar
  3. [3]
    Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449–462.CrossRefGoogle Scholar
  4. [4]
    Chyan, W.; Zhang, D. Y.; Lippard, S. J.; Radford, R. J. Reaction-based fluorescent sensor for investigating mobile Zn2+ in mitochondria of healthy versus cancerous prostate cells. Proc. Natl. Acad. Sci. USA 2014, 111, 143–148.CrossRefGoogle Scholar
  5. [5]
    Que, E. L.; Domaille, D. W.; Chang, C. J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2008, 108, 1517–1549.CrossRefGoogle Scholar
  6. [6]
    Hambley, T. W. Metal-based therapeutics. Science 2007, 318, 1392–1393.CrossRefGoogle Scholar
  7. [7]
    Kepp, K. P. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 2012, 112, 5193–5239.CrossRefGoogle Scholar
  8. [8]
    Magda, D.; Lecane, P.; Wang, Z.; Hu, W. L.; Thiemann, P.; Ma, X.; Dranchak, P. K.; Wang, X. M.; Lynch, V.; Wei, W. H. et al. Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008, 68, 5318–5325.CrossRefGoogle Scholar
  9. [9]
    Andersson, D. A.; Gentry, C.; Moss, S.; Bevan, S. Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc. Natl. Acad. Sci. USA 2009, 106, 8374–8379.CrossRefGoogle Scholar
  10. [10]
    Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991–2994.CrossRefGoogle Scholar
  11. [11]
    Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.Google Scholar
  12. [12]
    Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.CrossRefGoogle Scholar
  13. [13]
    Zhu, Y.; Li, W. X.; Zhang, Y.; Li, J.; Liang, L.; Zhang, X. Z.; Chen, N.; Sun, Y. H.; Chen, W.; Tai, R. Z. et al. Excessive sodium ions delivered into cells by nanodiamonds: Implications for tumor therapy. Small 2012, 8, 1771–1779.CrossRefGoogle Scholar
  14. [14]
    Muhammad, F.; Guo, M. Y.; Qi, W. X.; Sun, F. X.; Wang, A. F.; Guo, Y. J.; Zhu, G. S. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778–8781.CrossRefGoogle Scholar
  15. [15]
    Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H. B.; Yep, J. I.; Zink, J. I.; Nel, A. E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134.CrossRefGoogle Scholar
  16. [16]
    Richter, A. P.; Brown, J. S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E. A.; Paunov, V. N.; Stoyanov, S. D.; Velev, O. D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 2015, 10, 817–823.CrossRefGoogle Scholar
  17. [17]
    Ostrovsky, S.; Kazimirsky, G.; Gedanken, A.; Brodie, C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009, 2, 882–890.CrossRefGoogle Scholar
  18. [18]
    Gorostiza, P.; Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science 2008, 322, 395–399.CrossRefGoogle Scholar
  19. [19]
    Basa, P. N.; Antala, S.; Dempski, R. E.; Burdette, S. C. A zinc(II) photocage based on a decarboxylation metal ion release mechanism for investigating homeostasis and biological signaling. Angew. Chem., Int. Ed. 2015, 54, 13027–13031.CrossRefGoogle Scholar
  20. [20]
    Shao, Q.; Xing, B. G. Photoactive molecules for applications in molecular imaging and cell biology. Chem. Soc. Rev. 2010, 39, 2835–2846.CrossRefGoogle Scholar
  21. [21]
    Momotake, A.; Lindegger, N.; Niggli, E.; Barsotti, R. J.; Ellis-Davies, G. C. R. The nitrodibenzofuran chromophore: A new caging group for ultra-efficient photolysis in living cells. Nat. Methods 2006, 3, 35–40.CrossRefGoogle Scholar
  22. [22]
    Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184.CrossRefGoogle Scholar
  23. [23]
    Moo, J. G. S.; Presolski, S.; Pumera, M. Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 2016, 10, 3543–3552.CrossRefGoogle Scholar
  24. [24]
    Liu, D. B.; Chen, W. W.; Sun, K.; Deng, K.; Zhang, W.; Wang, Z.; Jiang, X. Y. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 4103–4107.CrossRefGoogle Scholar
  25. [25]
    Sendai, T.; Biswas, S.; Aida, T. Photoreconfigurable supramolecular nanotube. J. Am. Chem. Soc. 2013, 135, 11509–11512.CrossRefGoogle Scholar
  26. [26]
    Del Canto, E.; Natali, M.; Movia, D.; Giordani, S. Photocontrolled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 6034–6043.CrossRefGoogle Scholar
  27. [27]
    Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y. W.; Huang, L.; Li, Z. J.; Ma, G. L.; Zhou, Y. B.; Han, G. Illuminating cell signaling with near-infrared lightresponsive nanomaterials. ACS Nano 2016, 10, 3881–3885.CrossRefGoogle Scholar
  29. [29]
    Miyako, E.; Russier, J.; Mauro, M.; Cebrian, C.; Yawo, H.; Ménard-Moyon, C.; Hutchison, J. A.; Yudasaka, M.; Iijima, S.; De Cola, L. et al. Photofunctional nanomodulators for bioexcitation. Angew. Chem., Int. Ed. 2014, 53, 13121–13125.CrossRefGoogle Scholar
  30. [30]
    Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052.CrossRefGoogle Scholar
  31. [31]
    Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378.CrossRefGoogle Scholar
  32. [32]
    Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.CrossRefGoogle Scholar
  33. [33]
    Gao, H. D.; Thanasekaran, P.; Chiang, C. W.; Hong, J. L.; Liu, Y. C.; Chang, Y. H.; Lee, H. M. Construction of a near-infrared-activatable enzyme platform to remotely trigger intracellular signal transduction using an upconversion nanoparticle. ACS Nano 2015, 9, 7041–7051.CrossRefGoogle Scholar
  34. [34]
    Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.CrossRefGoogle Scholar
  35. [35]
    Liu, Y. Y.; Zhang, J. W.; Zuo, C. J.; Zhang, Z.; Ni, D. L.; Zhang, C.; Wang, J.; Zhang, H.; Yao, Z. W.; Bu, W. B. Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257–3266.CrossRefGoogle Scholar
  36. [36]
    Liu, J. N.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 2014, 136, 9701–9709.CrossRefGoogle Scholar
  37. [37]
    Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179–11185.Google Scholar
  38. [38]
    Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dyesensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066.CrossRefGoogle Scholar
  39. [39]
    Drees, C.; Raj, A. N.; Kurre, R.; Busch, K. B.; Haase, M.; Piehler, J. Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angew. Chem., Int. Ed. 2016, 55, 11668–11672.CrossRefGoogle Scholar
  40. [40]
    Li, W.; Chen, Z. W.; Zhou, L.; Li, Z. H.; Ren, J. S.; Qu, X. G. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization. J. Am. Chem. Soc. 2015, 137, 8199–8205.CrossRefGoogle Scholar
  41. [41]
    Sontag, J. M.; Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer's disease. Front. Mol. Neurosci. 2014, 7, 16.CrossRefGoogle Scholar
  42. [42]
    Gong, C. X.; Lidsky, T.; Wegiel, J.; Zuck, L.; Grundke- Igbal, L.; Iqbal, I. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain: Implications for neurofibrillary degeneration in Alzheimer’s disease. J. Biol. Chem. 2000, 275, 5535–5544.CrossRefGoogle Scholar
  43. [43]
    Wang, J. Z.; Grundke-Igbal, I.; Iqbal, K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 2007, 25, 59–68.CrossRefGoogle Scholar
  44. [44]
    Xiong, Y.; Jing, X. P.; Zhou, X. W.; Wang, X. L.; Yang, Y.; Sun, X. Y.; Qiu, M.; Cao, F. Y.; Lu, Y. M.; Liu, R. et al. Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol. Aging 2013, 34, 745–756.CrossRefGoogle Scholar
  45. [45]
    Xiong, Y.; Luo, D. J.; Wang, X. L.; Qiu, M.; Yang, Y.; Yan, X.; Wang, J. Z.; Ye, Q. F.; Liu, R. Zinc binds to and directly inhibits protein phosphatase 2A in vitro. Neurosci. Bull. 2015, 31, 331–337.CrossRefGoogle Scholar
  46. [46]
    Chen, Z. W.; Zhou, L.; Bing, W.; Zhang, Z. J.; Li, Z. H.; Ren, J. S.; Qu, X. G. Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis. J. Am. Chem. Soc. 2014, 136, 7498–7504.CrossRefGoogle Scholar
  47. [47]
    Zhou, L.; Chen, Z. W.; Dong, K.; Yin, M. L.; Ren, J. S.; Qu, X. G. DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. Adv. Mater. 2014, 26, 2424–2430.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied ChemistryChinese Academy of ScienceChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Stem Cell and Cancer Center, First Affiliated HospitalJilin UniversityChangchunChina

Personalised recommendations