Skip to main content

Surface chemistry of carbon nanoparticles functionally select their uptake in various stages of cancer cells


Relationship of the surface physicochemical characteristics of nanoparticles with their interactions with biological entities may provide critical information for nanomedicinal application. Here, we report the systematic synthesis of sub-50 nm carbon nanoparticles (CNP) presenting neutral, anionic, and cationic surface functionalities. A subset of CNPs with ~10, 20, and 40 nm hydrodynamic sizes were synthesized with neutral surface headgroups. For the first time, the cellular internalization of these CNPs was systematically quantified in various stages of breast cancer cells (early, late, and metastatic), thereby providing a parametric assessment of charge and size effects. Distinct activities were observed when these systems interacted with cancer cells in various stages. Our results indicated that metastatic breast cancer could be targeted by a nanosystem presenting anionic phosphate groups. On the contrary, for patients in late stage of cancer, drugs could be delivered with sulfonate functionalized carbon nanoparticles, which have higher probability of intracellular transport. This study will facilitate the better understanding of nanoparticle–biological entity interaction, and the integration of this knowledge with pathophysiology would promote the engineering of nanomedicine with superior likelihoods of crossing the endocytic “barrier” for drug delivery inside cancerous cells.

This is a preview of subscription content, access via your institution.


  1. [1]

    Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic. Bioengineer. Translat. Med. 2016, 1, 10–29.

    Article  Google Scholar 

  2. [2]

    Eifler, A. C.; Thaxton, C. S. Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. In Biomedical Nanotechnology; Hurst, S. J., Ed.; Humana Press: New York,2011; pp 325–338.

    Chapter  Google Scholar 

  3. [3]

    Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171.

    Article  Google Scholar 

  4. [4]

    Youan, B. B. C. Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine 2008, 3, 401–406.

    Article  Google Scholar 

  5. [5]

    Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.

    Article  Google Scholar 

  6. [6]

    Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2012, 64, 24–36.

    Article  Google Scholar 

  7. [7]

    Wang, T. T.; Bai, J.; Jiang, X. E.; Nienhaus, G. U. Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 2012, 6, 1251–1259.

    Article  Google Scholar 

  8. [8]

    Vercauteren, D.; Vandenbroucke, R. E.; Jones, A. T.; Rejman, J.; Demeester, J.; De Smedt, S. C.; Sanders, N. N.; Braeckmans, K. The use of inhibitors to study endocytic pathways of gene carriers: Optimization and pitfalls. Mol. Ther. 2010, 18, 561–569.

    Article  Google Scholar 

  9. [9]

    Chen, X. M.; Tian, F. L.; Zhang, X. R.; Wang, W. C. Internalization pathways of nanoparticles and their interaction with a vesicle. Soft Matter 2013, 9, 7592–7600.

    Article  Google Scholar 

  10. [10]

    Doherty, G. J.; McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 2009, 78, 857–902.

    Article  Google Scholar 

  11. [11]

    Ivanov, A. I. Pharmacological inhibition of endocytic pathways: Is it specific enough to be useful? In Exocytosis and Endocytosis: Methods in Molecular Biology; Ivanov, A. I., Ed.; Humana Press: New York,2008; pp 15–33.

    Chapter  Google Scholar 

  12. [12]

    Conner, S. D.; Schmid, S. L. Regulated portals of entry into the cell. Nature 2003, 422, 37–44.

    Article  Google Scholar 

  13. [13]

    Swanson, J. A.; Watts, C. Macropinocytosis. Trends Cell Biol. 1995, 5, 424–428.

    Article  Google Scholar 

  14. [14]

    Kumari, S.; Mg, S.; Mayor, S. Endocytosis unplugged: Multiple ways to enter the cell. Cell Res. 2010, 20, 256–275.

    Article  Google Scholar 

  15. [15]

    Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270.

    Article  Google Scholar 

  16. [16]

    Zhang, S. L.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2009, 21, 419–424.

    Article  Google Scholar 

  17. [17]

    Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147.

    Article  Google Scholar 

  18. [18]

    Saha, K.; Kim, S. T.; Yan, B.; Miranda, O. R.; Alfonso, F. S.; Shlosman, D.; Rotello, V. M. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 2013, 9, 300–305.

    Article  Google Scholar 

  19. [19]

    Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wi, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J. P.; Muller, S. et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, 2, 108–113.

    Article  Google Scholar 

  20. [20]

    Liang, M. T.; Lin, I. C.; Whittaker, M. R.; Minchin, R. F.; Monteiro, M. J.; Toth, I. Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano 2010, 4, 403–413.

    Article  Google Scholar 

  21. [21]

    Arvizo, R. R.; Rana, S.; Miranda, O. R.; Bhattacharya, R.; Rotello, V. M.; Mukherjee, P. Mechanism of anti-angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomedicine 2011, 7, 580–587.

    Article  Google Scholar 

  22. [22]

    Cho, E. C.; Xie, J. W.; Wurm, P. A.; Xia, Y. N. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009, 9, 1080–1084.

    Article  Google Scholar 

  23. [23]

    Liu, Z.; Liang, X. J. Nano-carbons as theranostics. Theranostics 2012, 2, 235–237.

    Article  Google Scholar 

  24. [24]

    Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregationinduced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771–779.

    Article  Google Scholar 

  25. [25]

    Misra, S. K.; Chang, H. H.; Mukherjee, P.; Tiwari, S.; Ohoka, A.; Pan, D. Regulating biocompatibility of carbon spheres via defined nanoscale chemistry and a careful selection of surface functionalities. Sci. Rep. 2015, 5, 14986.

    Article  Google Scholar 

  26. [26]

    Ferrari, A. C.; Roberston, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. Roy. Soc. A 2004, 362, 2477–2512.

    Article  Google Scholar 

  27. [27]

    Mahou, R.; Wandrey, C. Versatile route to synthesize heterobifunctional poly(ethylene glycol) of variable functionality for subsequent pegylation. Polymers 2012, 4, 561–589.

    Article  Google Scholar 

  28. [28]

    Gliem, M.; Heupel, W.-M.; Spindler, V.; Harms, G. S.; Waschke, J. Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Am. J. Physiol.–Cell Physiol. 2010, 299, C606–C613.

    Article  Google Scholar 

  29. [29]

    Papakonstanti, E. A.; Stournaras, C. Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett. 2008, 582, 2120–2127.

    Article  Google Scholar 

  30. [30]

    Allen, C.; Yu, Y. S.; Eisenberg, A.; Maysinger, D. Cellular internalization of PCL20-b-PEO44 block copolymer micelles. Biochim. Biophy. Acta 1999, 1421, 32–38.

    Article  Google Scholar 

  31. [31]

    Wang, L. M.; Liu, Y.; Li, W.; Jiang, X. M.; Ji, Y. L.; Wu, X. C.; Xu, L. G.; Qiu, Y.; Zhao, K.; Wei, T. T. et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett. 2011, 11, 772–780.

    Article  Google Scholar 

  32. [32]

    Kim, J. S.; Yoon, T. J.; Yu, K. N.; Noh, M. S.; Woo, M.; Kim, B. G.; Lee, K. H.; Sohn, B. H.; Park, S. B.; Lee, J. K., Cho, M. H. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci. 2006, 11, 772.

    Google Scholar 

  33. [33]

    Wang, L. H.; Rothberg, K. G.; Anderson, R. G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 1993, 123, 1107–1117.

    Article  Google Scholar 

  34. [34]

    McMahon, H. T.; Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2011, 12, 517–533.

    Article  Google Scholar 

  35. [35]

    Stuart, A. D.; Brown, T. D. K. Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J. Virol. 2006, 80, 7500–7509.

    Article  Google Scholar 

  36. [36]

    Macia, E.; Ehrlich, M.; Massol, R.; Boucrot, E.; Bruneer, C.; Kirchhausen, T. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 2006, 10, 839–850.

    Article  Google Scholar 

  37. [37]

    Kirchhausen, T.; Macia, E.; Pelish, H. E. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Method. Enzymol. 2008, 438, 77–93.

    Article  Google Scholar 

  38. [38]

    Chen, Y.; Wang, S.; Lu, X.; Zhang, H. R.; Fu, Y.; Luo, Y. Z. Cholesterol sequestration by nystatin enhances the uptake and activity of endostatin in endothelium via regulating distinct endocytic pathways. Blood 2011, 117, 6392–6403.

    Article  Google Scholar 

  39. [39]

    Sigismund, J.; Woelk, T.; Puri, C.; Maspero, E.; Tacchetti, C.; Transidico, P.; Di Fiore, P. P.; Polo, S. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl. Acad. Sci. USA 2005, 102, 2760–2765.

    Article  Google Scholar 

  40. [40]

    Raghu, H.; Sodadasu, P. K.; Malla, R. R.; Gondi, C. S.; Estes, N.; Rao, J. S. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 2010, 10, 647.

    Article  Google Scholar 

  41. [41]

    Zhang, L. W.; Monteiro-Riviere, N. A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 2009, 110, 138–155.

    Article  Google Scholar 

  42. [42]

    Lunov, O.; Syrovets, T.; Loos, C.; Beil, J.; Delecher, M.; Tron, K.; Neinhaus, G. U.; Musyanovych, A.; Mailä nder, V.; Landfester, K. et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 2011, 5, 1657–1669.

    Article  Google Scholar 

  43. [43]

    Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618.

    Article  Google Scholar 

Download references


We thank Frederick Seitz Materials Research Laboratory staffs, Roger Adams NMR Lab staffs, Carl R. Woese Institute of Genomic Biology microscopy suit staffs for their experimental and technical supports. We acknowledge Ayako Ohoka for help with the confocal studies. The funding support from the University of Illinois at Urbana-Champaign and Children’s Discovery Institute is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Dipanjan Pan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srivastava, I., Misra, S.K., Ostadhossein, F. et al. Surface chemistry of carbon nanoparticles functionally select their uptake in various stages of cancer cells. Nano Res. 10, 3269–3284 (2017).

Download citation


  • personalized medicine
  • endocytosis
  • surface charge
  • size
  • carbon nanoparticles