Nano Research

, Volume 10, Issue 9, pp 3018–3034 | Cite as

New class of two-dimensional bimetallic nanoplatelets for high energy density and electrochemically stable hybrid supercapacitors

Research Article


Currently, the application of supercapacitors (SCs) in portable electronic devices and vehicles is limited by their low energy density. Developing high-energy density SCs without sacrificing their advantages, such as their long-term stability and high power density, has thus become an increasing demand but a major challenge. This demand has motivated tremendous efforts, especially towards discovering and optimizing the architecture of novel electrode materials. To this end, we herein report the design, synthesis, and SC application of a new family of two-dimensional (2D) nanoplatelets, i.e., a transition-metal hydroxymethylate complex (Ni x Co1–x (OH)(OCH3)). Bimetallic nanoplatelets were synthesized via a cost-effective approach involving a one-step solvothermal procedure. We for the first time tuned the metal composition of these 2D nanoplatelets over the entire molar-fraction range (0–1.0). Tuning the molar ratio of Ni/Co allowed us to optimize the structures and physicochemical properties of the nanoplatelets for SC applications. When tested in a half cell, SC electrodes using the nanoplatelets exhibited high electrochemical performance with a specific capacitance as high as 1,415 F·g–1 and a 96.1% retention of the initial capacitance over 5,000 cycles. We exploited the novel 2D nanoplatelets as cathode materials to assemble a hybrid SC for full-cell tests. The resulting SCs operated in a wide potential window of 0–1.7 V, exhibited a high energy density over 50 Wh·kg–1, and sustained their performance over 10,000 charge–discharge cycles. The results suggest that the novel 2D nanoplatelets are promising alternative materials for the development of high-energy density SCs.


transition-metal hydroxymethylate complex two-dimensional (2D) nanoplatelet supercapacitor electrochemical energy storage tuning bimetallic composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by China postdoctoral science foundation (No. 2015M580299), Fundamental Research Funds for the Central Universities (Nos. 1514011 and 222201718003), and National Natural Science Foundation of China (No. 21576082). FP7 Staff-exchange for K. K. Z. and Z. T. L. under the ELECTRONANOMAT program (No. PIRSES-GA-2012-318990) sponsored by the Marie-Curie Act program of EU is acknowledged. K. K. Z. and Z. T. L. acknowledge the Danish Agency for Science, Technology and Innovation (No. 5132-00053B) for supporting collaboration with DTU. Q. J. C. acknowledges the Danish Council for Independent Research DFF-FTP (No. 12-127447) and the Danish Agency for Science, Technology and Innovation (No. 5132-00053B) for the financial support. We thank Prof. Xinhua Zhong for helpful discussions.

Supplementary material

12274_2017_1517_MOESM1_ESM.pdf (2.5 mb)
New class of two-dimensional bimetallic nanoplatelets for high energy density and electrochemically stable hybrid supercapacitors


  1. [1]
    Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269.CrossRefGoogle Scholar
  2. [2]
    Vlad, A.; Singh, N.; Galande, C.; Ajayan, P. M. Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 2015, 5, 1402115.CrossRefGoogle Scholar
  3. [3]
    Yu, M. H.; Qiu, W. T.; Wang, F. X.; Zhai, T.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Three dimensional architectures: Design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 2015, 3, 15792–15823.CrossRefGoogle Scholar
  4. [4]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  5. [5]
    Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.CrossRefGoogle Scholar
  6. [6]
    Rauda, I. E.; Augustyn, V.; Dunn, B.; Tolbert, S. H. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc. Chem. Res. 2013, 46, 1113–1124.CrossRefGoogle Scholar
  7. [7]
    Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.CrossRefGoogle Scholar
  8. [8]
    Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.CrossRefGoogle Scholar
  9. [9]
    Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon onions for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 3172–3196.CrossRefGoogle Scholar
  10. [10]
    Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Lou, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544–3552.CrossRefGoogle Scholar
  11. [11]
    Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990–1004.CrossRefGoogle Scholar
  12. [12]
    Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.CrossRefGoogle Scholar
  13. [13]
    Yang, M. Y.; Cheng, H.; Gu, Y. Y.; Sun, Z. F.; Hu, J.; Cao, L. J.; Lv, F. C.; Li, M. C.; Wang, W. X.; Wang, Z. Y. et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 2015, 8, 2744–2754.CrossRefGoogle Scholar
  14. [14]
    Hu, B. L.; Qin, X. Y.; Asiri, A. M.; Alamry, K. A.; Al-Youbi, A. O.; Sun, X. P. Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors. Electrochim. Acta 2013, 107, 339–342.CrossRefGoogle Scholar
  15. [15]
    Pu, Z. H.; Liu, Q.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Fabrication of Ni(OH)2 coated ZnO array for high-rate pseudocapacitive energy storage. Electrochim. Acta 2013, 109, 252–255.CrossRefGoogle Scholar
  16. [16]
    Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.CrossRefGoogle Scholar
  17. [17]
    Liu, S.; Sun, S. H.; You, X. Z. Inorganic nanostructured materials for high performance electrochemical supercapacitors. Nanoscale 2014, 6, 2037–2045.CrossRefGoogle Scholar
  18. [18]
    Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730.CrossRefGoogle Scholar
  19. [19]
    Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.CrossRefGoogle Scholar
  20. [20]
    Kim, B. C.; Hong, J. Y.; Wallace, G. G.; Park, H. S. Recent progress in flexible electrochemical capacitors: Electrode materials, device configuration, and functions. Adv. Energy Mater. 2015, 5, 1500959.CrossRefGoogle Scholar
  21. [21]
    Dong, L. B.; Xu, C. J.; Li, Y.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H.; Zhao, X. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J. Mater. Chem. A 2016, 4, 4659–4685.CrossRefGoogle Scholar
  22. [22]
    Peng, S. J.; Li, L. L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1401172.CrossRefGoogle Scholar
  23. [23]
    Xu, C. J.; Shi, S.; Sun, Y. G.; Chen, Y. Y.; Kang, F. Y. Ultrathin amorphous manganese dioxide nanosheets synthesized with controllable width. Chem. Commun. 2013, 49, 7331–7333.CrossRefGoogle Scholar
  24. [24]
    Hu, L. F.; Wu, L. M.; Liao, M. Y.; Hu, X. H.; Fang, X. S. Electrical transport properties of large, individual NiCo2O4 nanoplates. Adv. Funct. Mater. 2012, 22, 998–1004.CrossRefGoogle Scholar
  25. [25]
    Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.CrossRefGoogle Scholar
  26. [26]
    Ye, L.; Zhao, L. J.; Zhang, H.; Zhang, B.; Wang, H. Y. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9160–9168.CrossRefGoogle Scholar
  27. [27]
    Chen, D.; Wang, Q. F.; Wang, R. M.; Shen, G. Z. Ternary oxide nanostructured materials for supercapacitors: A review. J. Mater. Chem. A 2015, 3, 10158–10173.CrossRefGoogle Scholar
  28. [28]
    Yu, L.; Guan, B. Y.; Xiao, W.; Lou, X. W. Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 2015, 5, 1500981.CrossRefGoogle Scholar
  29. [29]
    Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347–351.Google Scholar
  30. [30]
    Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou, X. W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 2012, 5, 9453–9456.CrossRefGoogle Scholar
  31. [31]
    Zhang, G. Q.; Lou, X. W. Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci. Rep. 2013, 3, 1470.CrossRefGoogle Scholar
  32. [32]
    Gao, G. X.; Wu, H. B.; Ding, S. J.; Liu, L. M.; Lou, X. W. Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 2015, 11, 804–808.CrossRefGoogle Scholar
  33. [33]
    Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.CrossRefGoogle Scholar
  34. [34]
    Wang, C. H.; Zhang, X.; Xu, Z. T.; Sun, X. Z.; Ma, Y. W. Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: Structural design and green synthesis for advanced electrochemical storage. ACS Appl. Mater. Interfaces 2015, 7, 19601–19610.CrossRefGoogle Scholar
  35. [35]
    Liu, X. X.; Zhou, A. W.; Pan, T.; Dou, Y. B.; Shao, M. F.; Han, J. B.; Wei, M. Ultrahigh-rate-capability of a layered double hydroxide supercapacitor based on a self-generated electrolyte reservoir. J. Mater. Chem. A 2016, 4, 8421–8427.CrossRefGoogle Scholar
  36. [36]
    Li, T.; Li, G. H.; Li, L. H.; Liu, L.; Xu, Y.; Ding, H. Y.; Zhang, T. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 2562–2572.CrossRefGoogle Scholar
  37. [37]
    Gu, Y. H.; Lu, Z. Y.; Chang, Z.; Liu, J. F.; Lei, X. D.; Li, Y. P.; Sun, X. M. NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. J. Mater. Chem. A 2013, 1, 10655–10661.CrossRefGoogle Scholar
  38. [38]
    Wu, X. L.; Jiang, L. L.; Long, C. L.; Wei, T.; Fan, Z. J. Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv. Funct. Mater. 2015, 25, 1648–1655.CrossRefGoogle Scholar
  39. [39]
    Gu, F.; Cheng, X.; Wang, S. F.; Wang, X.; Lee, P. S. Oxidative intercalation for monometallic Ni2+-Ni3+ layered double hydroxide and enhanced capacitance in exfoliated nanosheets. Small 2015, 11, 2044–2050.CrossRefGoogle Scholar
  40. [40]
    Zhu, K. K.; Hu, J. C.; Kübel, C.; Richards, R. Efficient preparation and catalytic activity of MgO(111) nanosheets. Angew. Chem., Int. Ed. 2006, 45, 7277–7281.CrossRefGoogle Scholar
  41. [41]
    Zhu, K. K.; Hua, W. M.; Wang, X. Y. A facile synthesis of NiO nanosheet with high-energy (111) surface. Chem. Lett. 2011, 40, 156–158.CrossRefGoogle Scholar
  42. [42]
    Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X. G.; Zhu, K. K.; Jiao, F. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 2015, 137, 4223–4229.CrossRefGoogle Scholar
  43. [43]
    Fan, X. L.; Liu, Z. T.; Zhu, Y.-A.; Tong, G. S.; Zhang, J. D.; Engelbrekt, C.; Ulstrup, J.; Zhu, K. K.; Zhou, X. G. Tuning the composition of metastable CoxNiyMg100-x-y(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst. J. Catal. 2015, 330, 106–119.CrossRefGoogle Scholar
  44. [44]
    Zhu, K. K.; Hua, W. M.; Deng, W.; Richards, R. M. Preparation of MgO nanosheets with polar (111) surfaces by ligand exchange and esterification—Synthesis, structure, and application as catalyst support. Eur. J. Inorg. Chem. 2012, 2012, 2869–2876.CrossRefGoogle Scholar
  45. [45]
    Liang, J. B.; Ma, R. Z.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: A route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chem. Mater. 2010, 22, 371–378.CrossRefGoogle Scholar
  46. [46]
    Han, J.; Roh, K. C.; Jo, M. R.; Kang, Y. M. A novel coprecipitation method for one-pot fabrication of a Co-Ni multiphase composite electrode and its application in high energy-density pseudocapacitors. Chem. Commun. 2013, 49, 7067–7069.CrossRefGoogle Scholar
  47. [47]
    Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.CrossRefGoogle Scholar
  48. [48]
    Yang, J.; Yu, C.; Fan, X. M.; Qiu, J. S. 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv. Energy Mater. 2014, 4, 1400761.CrossRefGoogle Scholar
  49. [49]
    Wang, C. D.; Li, Y. S.; Jiang, J. J.; Chiang, W. H. Controllable tailoring graphene nanoribbons with tunable surface functionalities: An effective strategy toward highperformance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 17441–17449.CrossRefGoogle Scholar
  50. [50]
    Liu, Z. T.; Duan, X. Z.; Cheng, H. Y.; Zhou, J. H.; Zhou, X. G.; Yuan, W. K. Synthesis of platinum/graphene composites by a polyol method: The role of graphite oxide precursor surface chemistry. Carbon 2015, 89, 93–101.CrossRefGoogle Scholar
  51. [51]
    Seredych, M.; Tamashausky, A. V.; Bandosz, T. J. Graphite oxides obtained from porous graphite: The role of surface chemistry and texture in ammonia retention at ambient conditions. Adv. Funct. Mater. 2010, 20, 1670–1679.CrossRefGoogle Scholar
  52. [52]
    Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.CrossRefGoogle Scholar
  53. [53]
    Yang, J.; Liu, H. W.; Martens, W. N.; Frost, R. L. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 2010, 114, 111–119.CrossRefGoogle Scholar
  54. [54]
    Hu, Z. A.; Xie, Y.-L.; Wang, Y.-X.; Wu, H. Y.; Yang, Y.-Y.; Zhang, Z.-Y. Synthesis and electrochemical characterization of mesoporous CoxNi1-x layered double hydroxides as electrode materials for supercapacitors. Electrochim. Acta 2009, 54, 2737–2741.CrossRefGoogle Scholar
  55. [55]
    Wang, X.; Yan, C. Y.; Sumboja, A.; Yan, J.; Lee, P. S. Achieving high rate performance in layered hydroxide supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1301240.CrossRefGoogle Scholar
  56. [56]
    Shen, L. F.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694.CrossRefGoogle Scholar
  57. [57]
    Gao, Y.; Mi, L. W.; Wei, W. T.; Cui, S. Z.; Zheng, Z.; Hou, H. W.; Chen, W. H. Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 2015, 7, 4311–4319.CrossRefGoogle Scholar
  58. [58]
    Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.CrossRefGoogle Scholar
  59. [59]
    Yu, Z. Y.; Cheng, Z. X.; Majid, S. R.; Tai, Z. X.; Wang, X. L.; Dou, S. X. Smart design of free-standing ultrathin Co-Co(OH)2 composite nanoflakes on 3D nickel foam for high-performance electrochemical capacitors. Chem. Commun. 2015, 51, 1689–1692.CrossRefGoogle Scholar
  60. [60]
    Li, R. C.; Hu, Z. X.; Shao, X. F.; Cheng, P. P.; Li, S. S.; Yu, W. D.; Lin, W. R.; Yuan, D. S. Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci. Rep. 2016, 6, 18737.CrossRefGoogle Scholar
  61. [61]
    Wang, X.; Sumboja, A.; Lin, M. F.; Yan, J.; Lee, P. S. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale 2012, 4, 7266–7272.CrossRefGoogle Scholar
  62. [62]
    Tang, Y. F.; Liu, Y. Y.; Yu, S. X.; Guo, W. C.; Mu, S. C.; Wang, H. C.; Zhao, Y. F.; Hou, L.; Fan, Y. Q.; Gao, F. M. Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor. Electrochim. Acta 2015, 161, 279–289.CrossRefGoogle Scholar
  63. [63]
    Sun, X.; Wang, G. K.; Sun, H. T.; Lu, F. Y.; Yu, M. P.; Lian, J. Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. J. Power Sources 2013, 238, 150–156.CrossRefGoogle Scholar
  64. [64]
    Chen, J. C.; Hsu, C. T.; Hu, C. C. Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. J. Power Sources 2014, 253, 205–213.CrossRefGoogle Scholar
  65. [65]
    Gou, J. X.; Xie, S. L.; Liu, Y. R.; Liu, C. G. Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials. Electrochim. Acta 2016, 210, 915–924.CrossRefGoogle Scholar
  66. [66]
    Peng, H. R.; Zhou, M.; Li, Y. H.; Cui, X.; Yang, Y.; Zhang, Y. H.; Xiao, P. Ultrahigh voltage synthesis of 2D amorphous nickel-cobalt hydroxide nanosheets on CFP for high performance energy storage device. Electrochim. Acta 2016, 190, 695–702.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.UNILAB, State Key Lab of Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of ChemistryTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations