Nano Research

, Volume 10, Issue 9, pp 3005–3017 | Cite as

Carbon quantum dot-induced self-assembly of ultrathin Ni(OH)2 nanosheets: A facile method for fabricating three-dimensional porous hierarchical composite micro-nanostructures with excellent supercapacitor performance

Research Article

Abstract

Significant efforts have been directed towards the preparation and application of porous hierarchically structured materials owing to their large surface area, rich active sites, and enhanced mass transport and diffusion. In this study, a simple and cost-effective method for the carbon quantum dot (CQD)-induced assembly of two-dimensional ultrathin Ni(OH)2 nanosheets into a three-dimensional (3D) porous hierarchical structure was developed. The electrostatic forces between the CQDs and cations drove the self-assembly of the 3D CQDs/Ni(OH)2 hierarchical structures. As a new type of structure-directing agent, the CQDs played dual roles in tuning the morphology of the products and improving the supercapacitor performance. The multilevel CQDs/Ni(OH)2 micro-nanostructures had a large specific surface area and rich porosity. Owing to their unique structures and the conductivity of the CQDs, an optimized asymmetric supercapacitor using the CQDs/Ni(OH)2 exhibited a maximum specific capacity of 161.3 F·g–1 and a high energy density of 57.4 Wh·kg–1. This study introduces a potential method for the fabrication of many other 3D hierarchical structures with great potential for applications in various fields.

Keywords

carbon self-assembly hierarchical structures energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1516_MOESM1_ESM.pdf (2.5 mb)
Carbon quantum dot-induced self-assembly of ultrathin Ni(OH)2 nanosheets: A facile method for fabricating three-dimensional porous hierarchical composite micro-nanostructures with excellent supercapacitor performance

References

  1. [1]
    Zang, X. X.; Dai, Z. Y.; Guo, J.; Dong, Q. C.; Yang, J.; Huan, W.; Dong, X. C. Controllable synthesis of triangular Ni(HCO3)2 nanosheets for supercapacitor. Nano Res. 2016, 9, 1358–1365.CrossRefGoogle Scholar
  2. [2]
    Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531–5538.CrossRefGoogle Scholar
  3. [3]
    Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.CrossRefGoogle Scholar
  4. [4]
    Fan, H.; Huang, X.; Shang, L.; Cao, Y. T.; Zhao, Y. F.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction. Angew. Chem., Int. Ed. 2016, 55, 2167–2170.CrossRefGoogle Scholar
  5. [5]
    Cai, G. F.; Wang, J. X.; Lee, P. S. Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 2016, 49, 1469–1476.CrossRefGoogle Scholar
  6. [6]
    Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 2015, 9, 4686–4697.CrossRefGoogle Scholar
  7. [7]
    Gassensmith, J. J.; Kim, J. Y.; Holcroft, J. M.; Farha, O. K.; Stoddart, J. F.; Hupp, J. T.; Jeong, N. C. A metal-organic framework-based material for electrochemical sensing of carbon dioxide. J. Am. Chem. Soc. 2014, 136, 8277–8282.CrossRefGoogle Scholar
  8. [8]
    Sun, Q.; Dai, Z. F.; Meng, X. J.; Xiao, F. S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev. 2015, 44, 6018–6034.CrossRefGoogle Scholar
  9. [9]
    Trogadas, P.; Ramani, V.; Strasser, P.; Fuller, T. F.; Coppens, M. O. Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem., Int. Ed. 2016, 55, 122–148.CrossRefGoogle Scholar
  10. [10]
    Zhao, J. W.; Chen, J. L.; Xu, S. M.; Shao, M. F.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater. 2014, 24, 2938–2946.CrossRefGoogle Scholar
  11. [11]
    Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.CrossRefGoogle Scholar
  12. [12]
    Yin, H. J.; Tang, Z. Y. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 2016, 45, 4873–4891.CrossRefGoogle Scholar
  13. [13]
    Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk−shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738–744.CrossRefGoogle Scholar
  14. [14]
    Meng, X. J.; Nawaz, F.; Xiao, F. S. Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today 2009, 4, 292–301.CrossRefGoogle Scholar
  15. [15]
    Yang, X. Y.; Léonard, A.; Lemaire, A.; Tian, G.; Su, B. L. Self-formation phenomenon to hierarchically structured porous materials: Design, synthesis, formation mechanism and applications. Chem. Commun. 2011, 47, 2763–2786.CrossRefGoogle Scholar
  16. [16]
    Yuan, Z. Y.; Su, B. L. Insights into hierarchically mesomacroporous structured materials. J. Mater. Chem. 2006, 16, 663–677.CrossRefGoogle Scholar
  17. [17]
    Raza, A.; Wang, J. Q.; Yang, S.; Si, Y.; Ding, B. Hierarchical porous carbon nanofibers via electrospinning. Carbon Lett. 2014, 15, 1–14.CrossRefGoogle Scholar
  18. [18]
    Zhuo, S. J.; Shao, M. W.; Lee, S. T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 2012, 6, 1059–1064.CrossRefGoogle Scholar
  19. [19]
    Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.CrossRefGoogle Scholar
  20. [20]
    Jeong, J.; Cho, M.; Lim, Y. T.; Song, N. W.; Chung, B. H. Synthesis and characterization of a photoluminescent nanoparticle based on fullerene-silica hybridization. Angew. Chem., Int. Ed. 2009, 48, 5296–5299.CrossRefGoogle Scholar
  21. [21]
    Zhou, L.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem. Commun. 2012, 48, 1147–1149.CrossRefGoogle Scholar
  22. [22]
    Zhu, Y. R.; Ji, X. B.; Pan, C. C.; Sun, Q. Q.; Song, W. X.; Fang, L. B.; Chen, Q. Y.; Banks, C. E. A carbon quantum dot decorated RuO2 network: Outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 2013, 6, 3665–3675.CrossRefGoogle Scholar
  23. [23]
    Zhang, Y.; Foster, C. W.; Banks, C. E.; Shao, L. D.; Hou, H. S.; Zou, G. Q.; Chen, J.; Huang, Z. D.; Ji, X. B. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 2016, 28, 9391–9399.CrossRefGoogle Scholar
  24. [24]
    Zhu, Y. R.; Wu, Z. B.; Jing, M. J.; Hou, H. S.; Yang, Y. C.; Zhang, Y.; Yang, X. M.; Song, W. X.; Jia, X. N.; Ji, X. B. Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 2015, 3, 866–877.CrossRefGoogle Scholar
  25. [25]
    Chao, D. L.; Zhu, C. R.; Xia, X. H.; Liu, J. L.; Zhang, X.; Wang, J.; Liang, P.; Lin, J. Y.; Zhang, H.; Shen, Z. X. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565–573.CrossRefGoogle Scholar
  26. [26]
    Zhu, C. R.; Chao, D. L.; Sun, J.; Bacho, I. M.; Fan, Z. X.; Ng, C. F.; Xia, X. H.; Huang, H.; Zhang, H.; Shen, Z. X. et al. Enhanced lithium storage performance of CuO nanowires by coating of graphene quantum dots. Adv. Mater. Interfaces 2015, 2, 1400499.CrossRefGoogle Scholar
  27. [27]
    Jing, M. J.; Wang, J. F.; Hou, H. S.; Yang, Y. C.; Zhang, Y.; Pan, C. C.; Chen, J.; Zhu, Y. R.; Ji, X. B. Carbon quantum dot coated Mn3O4 with enhanced performances for lithiumion batteries. J. Mater. Chem. A 2015, 3, 16824–16830.CrossRefGoogle Scholar
  28. [28]
    Yang, Y. C.; Ji, X. B.; Jing, M. J.; Hou, H. S.; Zhu, Y. R.; Fang, L. B.; Yang, X. M.; Chen, Q. Y.; Banks, C. E. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 2015, 3, 5648–5655.CrossRefGoogle Scholar
  29. [29]
    Wei, J. S.; Ding, H.; Zhang, P.; Song, Y. F.; Chen, J.; Wang, Y. G.; Xiong, H. M. Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors. Small 2016, 12, 5927–5934.CrossRefGoogle Scholar
  30. [30]
    Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.CrossRefGoogle Scholar
  31. [31]
    Deng, J. H.; Lu, Q. J.; Mi, N. X.; Li, H. T.; Liu, M. L.; Xu, M. C.; Tan, L.; Xie, Q. J.; Zhang, Y. Y.; Yao, S. Z. Electrochemical synthesis of carbon nanodots directly from alcohols. Chem.—Eur. J. 2014, 20, 4993–4999.CrossRefGoogle Scholar
  32. [32]
    Mai, L. Q.; Minhas-Khan, A.; Tian, X. C.; Hercule, K. M.; Zhao, Y. L.; Lin, X.; Xu, X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 2013, 4, 2923.CrossRefGoogle Scholar
  33. [33]
    Xiong, X. H.; Waller, G.; Ding, D.; Chen, D. C.; Rainwater, E.; Zhao, B. T.; Wang, Z. X.; Liu, M. L. Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 2015, 16, 71–80.CrossRefGoogle Scholar
  34. [34]
    Lee, D. U.; Fu, J.; Park, M. G.; Liu, H.; Kashkooli, A. G.; Chen, Z. W. Self-assembled NiO/Ni(OH)2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett. 2016, 16, 1794–1802.CrossRefGoogle Scholar
  35. [35]
    Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.CrossRefGoogle Scholar
  36. [36]
    Xu, L. P.; Ding, Y. S.; Chen, C. H.; Zhao, L. L.; Rimkus, C.; Joesten, R.; Suib, S. L. 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem. Mater. 2008, 20, 308–316.CrossRefGoogle Scholar
  37. [37]
    Xie, M. J.; Duan, S. Y.; Shen, Y.; Fang, K.; Wang, Y. Z.; Lin, M.; Guo, X. F. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 2016, 1, 814–819.CrossRefGoogle Scholar
  38. [38]
    Chen, H.; Hu, L. F.; Yan, Y.; Che, R. C.; Chen, M.; Wu, L. M. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv. Energy Mater. 2013, 3, 1636–1646.CrossRefGoogle Scholar
  39. [39]
    Shen, L. F.; Yu, L.; Wu, H. B.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694.CrossRefGoogle Scholar
  40. [40]
    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J. F. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 2014, 4, 4315.CrossRefGoogle Scholar
  41. [41]
    Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.CrossRefGoogle Scholar
  42. [42]
    Krishnamoorthy, K.; Veerasubramani, G. K.; Radhakrishnan, S.; Kim, S. J. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 2014, 251, 116–122.CrossRefGoogle Scholar
  43. [43]
    Zhao, Y.; Hu, L. F.; Zhao, S. Y.; Wu, L. M. Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct. Mater. 2016, 26, 4085–4093.CrossRefGoogle Scholar
  44. [44]
    Yang, M. Y.; Cheng, H.; Gu, Y. Y.; Sun, Z. F.; Hu, J.; Cao, L. J.; Lv, F. C.; Li, M. C.; Wang, W. X.; Wang, Z. Y. et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano. Res 2015, 8, 2744–2754.CrossRefGoogle Scholar
  45. [45]
    Zhu, J. X.; Huang, L.; Xiao, Y. X.; Shen, L.; Chen, Q.; Shi, W. Z. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core–shell nanostructures for high-performance asymmetric supercapacitors. Nanoscale 2014, 6, 6772–6781.CrossRefGoogle Scholar
  46. [46]
    Salunkhe, R. R.; Lin, J. J.; Malgras, V.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 2015, 11, 211–218.CrossRefGoogle Scholar
  47. [47]
    Ye, L.; Zhao, L. J.; Zhang, H.; Zhang, B.; Wang, H. Y. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9160–9168.CrossRefGoogle Scholar
  48. [48]
    Tang, C. H.; Yin, X. S.; Gong, H. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core–shell electrode. ACS Appl. Mater. Interfaces 2013, 5, 10574–10582.CrossRefGoogle Scholar
  49. [49]
    Wang, X.; Sumboja, A.; Lin, M. F.; Yan, J.; Lee, P. S. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: A hybrid material for an asymmetric supercapacitor device. Nanoscale 2012, 4, 7266–7272.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guijuan Wei
    • 1
  • Kun Du
    • 1
  • Xixia Zhao
    • 1
  • Zhaojie Wang
    • 1
  • Ming Liu
    • 1
  • Chuang Li
    • 1
  • Hui Wang
    • 2
  • Changhua An
    • 1
    • 2
  • Wei Xing
    • 1
  1. 1.State Key Laboratory of Heavy Oil Processing, College of Science and College of Chemical EngineeringChina University of PetroleumQingdaoChina
  2. 2.Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations