Nano Research

, Volume 10, Issue 6, pp 2181–2191 | Cite as

Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles

  • Dunfeng Gao
  • Hu Zhou
  • Fan Cai
  • Dongniu Wang
  • Yongfeng Hu
  • Bei Jiang
  • Wen-Bin Cai
  • Xiaoqi Chen
  • Rui Si
  • Fan Yang
  • Shu Miao
  • Jianguo WangEmail author
  • Guoxiong WangEmail author
  • Xinhe BaoEmail author
Research Article


Active-phase engineering is regularly utilized to tune the selectivity of metal nanoparticles (NPs) in heterogeneous catalysis. However, the lack of understanding of the active phase in electrocatalysis has hampered the development of efficient catalysts for CO2 electroreduction. Herein, we report the systematic engineering of active phases of Pd NPs, which are exploited to select reaction pathways for CO2 electroreduction. In situ X-ray absorption spectroscopy, in situ attenuated total reflection-infrared spectroscopy, and density functional theory calculations suggest that the formation of a hydrogen-adsorbed Pd surface on a mixture of the α- and β-phases of a palladium-hydride core (α+β PdH x @PdH x ) above −0.2 V (vs. a reversible hydrogen electrode) facilitates formate production via the HCOO* intermediate, whereas the formation of a metallic Pd surface on the β-phase Pd hydride core (β PdH x @Pd) below −0.5 V promotes CO production via the COOH* intermediate. The main product, which is either formate or CO, can be selectively produced with high Faradaic efficiencies (>90%) and mass activities in the potential window of 0.05 to −0.9 V with scalable application demonstration.


carbon-dioxide electroreduction Pd nanoparticles active phase selectivity fluctuation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge financial support from the National Basic Research Program of China (Nos. 2016YFB0600901 and 2013CB733501), the National Natural Science Foundation of China (Nos. 21136001, 21573222, 91545202 and 91334103), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200). We thank staff at the BL14W1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) for the kind help during XAFS measurements. G. X. W. also thanks the financial support from CAS Youth Innovation Promotion Association.

Supplementary material

12274_2017_1514_MOESM1_ESM.pdf (5.1 mb)
Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles


  1. [1]
    Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.CrossRefGoogle Scholar
  2. [2]
    Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.CrossRefGoogle Scholar
  3. [3]
    Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquidmediated selective conversion of CO2 to COat low overpotentials. Science 2011, 334, 643–644.CrossRefGoogle Scholar
  4. [4]
    Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.CrossRefGoogle Scholar
  5. [5]
    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.CrossRefGoogle Scholar
  6. [6]
    Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.CrossRefGoogle Scholar
  7. [7]
    Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.CrossRefGoogle Scholar
  8. [8]
    Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.CrossRefGoogle Scholar
  9. [9]
    Mistry, H.; Reske, R.; Zeng, Z. H.; Zhao, Z. J.; Greeley, J.; Strasser, P.; Cuenya, B. R. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 2014, 136, 16473–16476.CrossRefGoogle Scholar
  10. [10]
    Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.CrossRefGoogle Scholar
  11. [11]
    Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.CrossRefGoogle Scholar
  12. [12]
    Salehi-Khojin, A.; Jhong, H. R. M.; Rosen, B. A.; Zhu, W.; Ma, S. C.; Kenis, P. J. A.; Masel, R. I. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632.CrossRefGoogle Scholar
  13. [13]
    Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.CrossRefGoogle Scholar
  14. [14]
    Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.CrossRefGoogle Scholar
  15. [15]
    Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.CrossRefGoogle Scholar
  16. [16]
    Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.CrossRefGoogle Scholar
  17. [17]
    Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.CrossRefGoogle Scholar
  18. [18]
    Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470.CrossRefGoogle Scholar
  19. [19]
    Schlögl, R. Heterogeneous catalysis. Angew. Chem., Int. Ed. 2015, 54, 3465–3520.CrossRefGoogle Scholar
  20. [20]
    Rotermund, H. H.; Engel, W.; Kordesch, M.; Ertl, G. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature 1990, 343, 355–357.CrossRefGoogle Scholar
  21. [21]
    Kim, M.; Bertram, M.; Pollmann, M.; von Oertzen, A.; Mikhailov, A. S.; Rotermund, H. H.; Ertl, G. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science 2001, 292, 1357–1360.CrossRefGoogle Scholar
  22. [22]
    Wang, J. G.; Li, W. X.; Borg, M.; Gustafson, J.; Mikkelsen, A.; Pedersen, T. M.; Lundgren, E.; Weissenrieder, J.; Klikovits, J.; Schmid, M. et al. One-dimensional PtO2 at Pt steps: Formation and reaction with CO. Phys. Rev. Lett. 2005, 95, 256102.CrossRefGoogle Scholar
  23. [23]
    Pettinger, B.; Bao, X. H.; Wilcock, I.; Muhler, M.; Schlögl, R.; Ertl, G. Thermal decomposition of silver oxide monitored by Raman spectroscopy: From AgO units to oxygen atoms chemisorbed on the silver surface. Angew. Chem., Int. Ed. 1994, 33, 85–86.CrossRefGoogle Scholar
  24. [24]
    Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.CrossRefGoogle Scholar
  25. [25]
    Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.CrossRefGoogle Scholar
  26. [26]
    Long, R.; Wu, D.; Li, Y. P.; Bai, Y.; Wang, C. M.; Song, L.; Xiong, Y. J. Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control. Nano Res. 2015, 8, 2115–2123.CrossRefGoogle Scholar
  27. [27]
    Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.CrossRefGoogle Scholar
  28. [28]
    Wang, J. Y.; Zhang, H. X.; Jiang, K.; Cai, W. B. From HCOOH to COat Pd electrodes: A surface-enhanced infrared spectroscopy study. J. Am. Chem. Soc. 2011, 133, 14876–14879.CrossRefGoogle Scholar
  29. [29]
    Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.CrossRefGoogle Scholar
  30. [30]
    Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active ß-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.CrossRefGoogle Scholar
  31. [31]
    Sahu, S. C.; Samantara, A. K.; Dash, A.; Juluri, R. R.; Sahu, R. K.; Mishra, B. K.; Jena, B. K. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst. Nano Res. 2013, 6, 635–643.CrossRefGoogle Scholar
  32. [32]
    Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 2015, 162, F190–F203.CrossRefGoogle Scholar
  33. [33]
    Min, X. Q.; Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 2015, 137, 4701–4708.CrossRefGoogle Scholar
  34. [34]
    Gao, D. F.; Wang, J.; Wu, H. H.; Jiang, X. L.; Miao, S.; Wang, G. X.; Bao, X. H. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochem. Commun. 2015, 55, 1–5.CrossRefGoogle Scholar
  35. [35]
    Kortlever, R.; Balemans, C.; Kwon, Y.; Koper, M. T. M. Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal. Today 2015, 244, 58–62.CrossRefGoogle Scholar
  36. [36]
    Kortlever, R.; Peters, I.; Koper, S.; Koper, M. T. M. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbonsupported bimetallic Pd-Pt nanoparticles. ACS Catal. 2015, 5, 3916–3923.CrossRefGoogle Scholar
  37. [37]
    Zhang, S.; Kang, P.; Bakir, M.; Lapides, A. M.; Dares, C. J.; Meyer, T. J. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl. Acad. Sci. USA 2015, 112, 15809–15814.CrossRefGoogle Scholar
  38. [38]
    Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.CrossRefGoogle Scholar
  39. [39]
    Pérez-Rodríguez, S.; Rillo, N.; Lázaro, M. J.; Pastor, E. Pd catalysts supported onto nanostructured carbon materials for CO2 valorization by electrochemical reduction. Appl. Catal. B-Environ. 2015, 163, 83–95.CrossRefGoogle Scholar
  40. [40]
    Zhang, Y. J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition metal electrocatalysts. ACS Catal. 2014, 4, 3742–3748.CrossRefGoogle Scholar
  41. [41]
    Ledezma-Yanez, I.; Gallent, E. P.; Koper, M. T. M.; Calle-Vallejo, F. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal. Today 2016, 262, 90–94.CrossRefGoogle Scholar
  42. [42]
    Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Srabionyan, V. V.; Bugaev, L. A.; Soldatov, A. V.; Lamberti, C.; Dmitriev, V. P.; van Bokhoven, J. A. Temperature-and pressure-dependent hydrogen concentration in supported PdHx nanoparticles by Pd K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 2014, 118, 10416–10423.CrossRefGoogle Scholar
  43. [43]
    Tew, M. W.; Miller, J. T.; van Bokhoven, J. A. Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L3 edge vs. K edge X-ray absorption spectroscopy. J. Phys. Chem. C 2009, 113, 15140–15147.CrossRefGoogle Scholar
  44. [44]
    Tew, M. W.; Nachtegaal, M.; Janousch, M.; Huthwelker, T.; van Bokhoven, J. A. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silicasupported palladium nanoparticles: In situ Pd K and L3 edge XAS. Phys. Chem. Chem. Phys. 2012, 14, 5761–5768.CrossRefGoogle Scholar
  45. [45]
    Guo, N.; Fingland, B. R.; Williams, W. D.; Kispersky, V. F.; Jelic, J.; Delgass, W. N.; Ribeiro, F. H.; Meyer, R. J.; Miller, J. T. Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction. Phys. Chem. Chem. Phys. 2010, 12, 5678–5693.CrossRefGoogle Scholar
  46. [46]
    Karamad, M.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Mechanistic pathway in the electrochemical reduction of CO2 on RuO2. ACS Catal. 2015, 5, 4075–4081.CrossRefGoogle Scholar
  47. [47]
    Su, H. Y.; Gorlin, Y.; Man, I. C.; Calle-Vallejo, F.; Nørskov, J. K.; Jaramillo, T. F.; Rossmeisl, J. Identifying active surface phases for metal oxide electrocatalysts: A study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 2012, 14, 14010–14022.CrossRefGoogle Scholar
  48. [48]
    Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.CrossRefGoogle Scholar
  49. [49]
    Yang, Y. Y.; Ren, J.; Zhang, H. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution. Langmuir 2013, 29, 1709–1716.CrossRefGoogle Scholar
  50. [50]
    Miyake, H.; Okada, T.; Samjeske, G.; Osawa, M. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 3662–3669.CrossRefGoogle Scholar
  51. [51]
    Jiang, K.; Xu, K.; Zou, S. Z.; Cai, W. B. B-doped Pd catalyst: Boosting room-temperature hydrogen production from formic acid-formate solutions. J. Am. Chem. Soc. 2014, 136, 4861–4864.CrossRefGoogle Scholar
  52. [52]
    Zhang, H.-X.; Wang, S.-H.; Jiang, K.; André, T.; Cai, W.-B. In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH. J. Power Sources 2012, 199, 165–169.CrossRefGoogle Scholar
  53. [53]
    Huo, S. J.; Wang, J. Y.; Sun, D. L.; Cai, W. B. Attenuated total reflection surface-enhanced infrared absorption spectroscopy at a cobalt electrode. Appl. Spectrosc. 2009, 63, 1162–1167.CrossRefGoogle Scholar
  54. [54]
    Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.CrossRefGoogle Scholar
  55. [55]
    Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392.CrossRefGoogle Scholar
  56. [56]
    Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to COon ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.CrossRefGoogle Scholar
  57. [57]
    Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Dunfeng Gao
    • 1
  • Hu Zhou
    • 2
  • Fan Cai
    • 1
    • 6
  • Dongniu Wang
    • 3
  • Yongfeng Hu
    • 3
  • Bei Jiang
    • 4
  • Wen-Bin Cai
    • 4
  • Xiaoqi Chen
    • 1
  • Rui Si
    • 5
  • Fan Yang
    • 1
  • Shu Miao
    • 1
  • Jianguo Wang
    • 2
    Email author
  • Guoxiong Wang
    • 1
    Email author
  • Xinhe Bao
    • 1
    Email author
  1. 1.State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.College of Chemical EngineeringZhejiang University of TechnologyHangzhouChina
  3. 3.Canadian Light Source Inc.University of SaskatchewanSaskatoonCanada
  4. 4.Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of ChemistryFudan UniversityShanghaiChina
  5. 5.Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  6. 6.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations