Nano Research

, Volume 10, Issue 9, pp 2998–3004 | Cite as

High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface

  • Jun Zhang
  • Xia Sheng
  • Jian Jin
  • Xinjian Feng
  • Lei Jiang
Research Article

Abstract

The wetting properties of an electrode surface are of significant importance to the performance of electrochemical devices because electron transfer occurs at the electrode/electrolyte interface. Described in this paper is a low-cost metal oxide electrocatalyst (CuO)-based high-performance sensing device using an enzyme electrode with a solid/liquid/air triphase interface in which the oxygen level is constant and sufficiently high. We apply the sensing device to detect glucose, a model test analyte, and demonstrate a linear dynamic range up to 50 mM, which is about 25 times higher than that obtained using a traditional enzyme electrode with a solid/liquid diphase interface. Moreover, we show that sensing devices based on a triphase assaying interface are insensitive to the significant oxygen level fluctuation in the analyte solution.

Keywords

superhydrophobicity triphase interface metal oxide electrocatalyst sensing device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1510_MOESM1_ESM.pdf (1.2 mb)
High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface

References

  1. [1]
    Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.CrossRefGoogle Scholar
  2. [2]
    Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.CrossRefGoogle Scholar
  3. [3]
    Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Superhydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.CrossRefGoogle Scholar
  4. [4]
    Lafuma, A.; Quéré, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460.CrossRefGoogle Scholar
  5. [5]
    Liu, T. Y.; Kim, C. J. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100.CrossRefGoogle Scholar
  6. [6]
    Stojanovic, A.; Artus, G. R. J.; Seeger, S. Micropatterning of superhydrophobic silicone nanofilaments by a near-ultraviolet Nd:YAG laser. Nano Res. 2010, 3, 889–894.CrossRefGoogle Scholar
  7. [7]
    Li, J.; Hou, Y. M.; Liu, Y. H.; Hao, C. L.; Li, M. F.; Chaudhury, M. K.; Yao, S. H.; Wang, Z. K. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 2016, 12, 606–612.CrossRefGoogle Scholar
  8. [8]
    Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135.CrossRefGoogle Scholar
  9. [9]
    Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293.CrossRefGoogle Scholar
  10. [10]
    Gwon, H. J.; Park, Y.; Moon, C. W.; Nahm, S.; Yoon, S.-J.; Kim, S. Y.; Jang, H. W. Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Res. 2014, 7, 670–678.CrossRefGoogle Scholar
  11. [11]
    Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266–273.CrossRefGoogle Scholar
  12. [12]
    Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 2012, 335, 67–70.CrossRefGoogle Scholar
  13. [13]
    Aebisher, D.; Bartusik, D.; Liu, Y.; Zhao, Y. Y.; Barahman, M.; Xu, Q. F.; Lyons, A. M.; Greer, A. Superhydrophobic photosensitizers. Mechanistic studies of 1O2 generation in the plastron and solid/liquid droplet interface. J. Am. Chem. Soc. 2013, 135, 18990–18998.CrossRefGoogle Scholar
  14. [14]
    Lei, Y. J.; Sun, R. Z.; Zhang, X. C.; Feng, X. J.; Jiang, L. Oxygen-rich enzyme biosensor based on superhydrophobic electrode. Adv. Mater. 2016, 28, 1477–1481.CrossRefGoogle Scholar
  15. [15]
    Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for highperformance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.CrossRefGoogle Scholar
  16. [16]
    Wang, S. S.; Wu, Y. C.; Kan, X. N.; Su, B.; Jiang, L. Regular metal sulfide microstructure arrays contributed by ambient-connected gas matrix trapped on superhydrophobic surface. Adv. Funct. Mater. 2014, 24, 7007–7013.CrossRefGoogle Scholar
  17. [17]
    Guilbault, G. G.; Lubrano, G. J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973, 64, 439–455.CrossRefGoogle Scholar
  18. [18]
    Wilson, G. S.; Hu, Y. B. Enzyme-based biosensors for in vivo measurements. Chem. Rev. 2000, 100, 2693–2704.CrossRefGoogle Scholar
  19. [19]
    Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505.CrossRefGoogle Scholar
  20. [20]
    Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825.CrossRefGoogle Scholar
  21. [21]
    Chu, Z. Y.; Shi, L.; Liu, Y.; Jin, W. Q.; Xu, N. P. In-situ growth of micro-cubic Prussian blue-TiO2 composite film as a highly sensitive H2O2 sensor by aerosol co-deposition approach. Biosens. Bioelectron. 2013, 47, 329–334.CrossRefGoogle Scholar
  22. [22]
    Zhang, L.; Ni, Y. H.; Wang, X. H.; Zhao, G. C. Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on α-Fe2O3 nanoparticles-chitosan composite. Talanta 2010, 82, 196–201.CrossRefGoogle Scholar
  23. [23]
    Asif, M. H.; Ali, S. M.; Nur, O.; Willander, M.; Brannmark, C.; Strålfors, P.; Englund, U. H.; Elinder, F.; Danielsson, B. Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. Biosens. Bioelectron. 2010, 25, 2205–2211.CrossRefGoogle Scholar
  24. [24]
    Hahn, Y. B.; Ahmad, R.; Tripathy, N. Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 2012, 48, 10369–10385.CrossRefGoogle Scholar
  25. [25]
    Umar, A.; Rahman, M. M.; Al-Hajry, A.; Hahn, Y. B. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem. Commun. 2009, 11, 278–281.CrossRefGoogle Scholar
  26. [26]
    Li, C. L.; Kurniawan, M.; Sun, D. L.; Tabata, H.; Delaunay, J. J. Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing. Nanotechnology 2015, 26, 015503.CrossRefGoogle Scholar
  27. [27]
    Zhang, J.; Sheng, X.; Cheng, X. Q.; Chen, L. P.; Jin, J.; Feng, X. J. Robust electrochemical metal oxide deposition using an electrode with a superhydrophobic surface. Nanoscale 2017, 9, 87–90.CrossRefGoogle Scholar
  28. [28]
    Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: Cambridge, 1984.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jun Zhang
    • 1
    • 2
  • Xia Sheng
    • 1
  • Jian Jin
    • 2
  • Xinjian Feng
    • 1
  • Lei Jiang
    • 3
  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina
  3. 3.School of Chemistry and EnvironmentBeihang UniversityBeijingChina

Personalised recommendations