Nano Research

, Volume 10, Issue 9, pp 2988–2997 | Cite as

Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy

  • Pengsong Li
  • Qixian Xie
  • Lirong Zheng
  • Guang Feng
  • Yingjie Li
  • Zhao Cai
  • Yongmin Bi
  • Yaping Li
  • Yun Kuang
  • Xiaoming Sun
  • Xue Duan
Research Article

Abstract

Layered double hydroxides (LDHs) have been widely used as catalysts owing to their tunable structure and atomic dispersion of high-valence metal ions; however, limited tunability of electronic structure and valence states have hindered further improvement in their catalytic performance. Herein, we reduced ultrathin LDH precursors in situ and topotactically converted them to atomically thick (~2 nm) two-dimensional (2D) multi-metallic, single crystalline alloy nanosheets with highly tunable metallic compositions. The as-obtained alloy nanosheets not only maintained the vertically aligned ultrathin 2D structure, but also inherited the atomic dispersion of the minor metallic compositions of the LDH precursors, even though the atomic percentage was higher than 20%, which is far beyond the reported percentages for single-atom dispersions (usually less than 0.1%). Besides, surface engineering of the alloy nanosheets can finely tune the surface electronic structure for catalytic applications. Such in situ topotactic conversion strategy has introduced a novel approach for atomically dispersed alloy nanostructures and reinforced the synthetic methodology for ultrathin 2D metal-based catalysts.

Keywords

atomic thickness two-dimensional (2D) nanosheets non-noble-metal alloy atomic dispersion catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1509_MOESM1_ESM.pdf (4.2 mb)
Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy

References

  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.CrossRefGoogle Scholar
  3. [3]
    Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.CrossRefGoogle Scholar
  4. [4]
    Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.Google Scholar
  5. [5]
    Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594.CrossRefGoogle Scholar
  6. [6]
    Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.CrossRefGoogle Scholar
  7. [7]
    Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.CrossRefGoogle Scholar
  8. [8]
    Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. Q.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294–20297.CrossRefGoogle Scholar
  9. [9]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  10. [10]
    Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.CrossRefGoogle Scholar
  11. [11]
    Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.CrossRefGoogle Scholar
  12. [12]
    Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.CrossRefGoogle Scholar
  13. [13]
    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.CrossRefGoogle Scholar
  14. [14]
    Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.CrossRefGoogle Scholar
  15. [15]
    Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345, 1593–1596.CrossRefGoogle Scholar
  16. [16]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.Google Scholar
  17. [17]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  18. [18]
    Hogeboom, G. H.; Schneider, W. C.; Pallade, G. E. Cytochemical studies of mammalian tissues I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J. Biol. Chem. 1948, 172, 619–635.Google Scholar
  19. [19]
    Sels, B.; de Vos, D.; Buntinx, M.; Pierard, F.; Kirsch-De Mesmaeker, A.; Jacobs, P. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination. Nature 1999, 400, 855–857.CrossRefGoogle Scholar
  20. [20]
    Heitbaum, M.; Glorius, F.; Escher, I. Asymmetric heterogeneous catalysis. Angew. Chem., Int. Ed. 2006, 45, 4732–4762.CrossRefGoogle Scholar
  21. [21]
    Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.CrossRefGoogle Scholar
  22. [22]
    Sideris, P. J.; Nielsen, U. G.; Gan, Z. H.; Grey, C. P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 2008, 321, 113–117.CrossRefGoogle Scholar
  23. [23]
    Evans, D. G.; Slade, R. C. T. Structural aspects of layered double hydroxides. In Layered Double Hydroxides; Duan, X.; Evans, D. G., Eds.; Springer: Berlin Heidelberg, 2006; pp 1–87.Google Scholar
  24. [24]
    Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.CrossRefGoogle Scholar
  25. [25]
    Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.CrossRefGoogle Scholar
  26. [26]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.CrossRefGoogle Scholar
  27. [27]
    Schneider, W. Methods for the isolation of particulate components of the cell. In Manometric Techniques; Burgess: Minneapolis, Minnesota, 1957; pp 188–201.Google Scholar
  28. [28]
    Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.CrossRefGoogle Scholar
  29. [29]
    Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.CrossRefGoogle Scholar
  30. [30]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.CrossRefGoogle Scholar
  31. [31]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  32. [32]
    Washio, I.; Xiong, Y.; Yin, Y.; Xia, Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater. 2006, 18, 1745–1749.CrossRefGoogle Scholar
  33. [33]
    Li, C. C.; Cai, W. P.; Cao, B. Q.; Sun, F. Q.; Li, Y.; Kan, C. X.; Zhang, L. D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 2006, 16, 83–90.CrossRefGoogle Scholar
  34. [34]
    Tangeysh, B.; Moore Tibbetts, K.; Odhner, J. H.; Wayland, B. B.; Levis, R. J. Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction. Nano Lett. 2015, 15, 3377–3382.CrossRefGoogle Scholar
  35. [35]
    Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.CrossRefGoogle Scholar
  36. [36]
    Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.CrossRefGoogle Scholar
  37. [37]
    Thomas, J. M. Catalysis: Tens of thousands of atoms replaced by one. Nature 2015, 525, 325–326.CrossRefGoogle Scholar
  38. [38]
    Tamura, K.; Kimura, Y.; Suzuki, H.; Kido, O.; Sato, T.; Tanigaki, T.; Kurumada, M.; Saito, Y.; Kaito, C. Structure and thickness of natural oxide layer on ultrafine particle. Jpn. J. Appl. Phys. 2003, 42, 7489–7492.CrossRefGoogle Scholar
  39. [39]
    Knight, M. W.; King, N. S.; Liu, L. F.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for plasmonics. ACS Nano 2014, 8, 834–840.CrossRefGoogle Scholar
  40. [40]
    Haber, J. A.; Buhro, W. E. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. J. Am. Chem. Soc. 1998, 120, 10847–10855.CrossRefGoogle Scholar
  41. [41]
    Meselson, M.; Stahl, F. W.; Vinograd, J. Equilibrium sedimentation of macromolecules in density gradients. Proc. Natl. Acad. Sci. USA 1957, 43, 581–588.CrossRefGoogle Scholar
  42. [42]
    Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.CrossRefGoogle Scholar
  43. [43]
    Brakke, M. K. Density gradient centrifugation: A new separation technique. J. Am. Chem. Soc. 1951, 73, 1847–1848.CrossRefGoogle Scholar
  44. [44]
    Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S. et al. A Janus cobalt-based catalytic material for electrosplitting of water. Nat. Mater. 2012, 11, 802–807.CrossRefGoogle Scholar
  45. [45]
    Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.CrossRefGoogle Scholar
  46. [46]
    Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.CrossRefGoogle Scholar
  47. [47]
    Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.CrossRefGoogle Scholar
  48. [48]
    Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.CrossRefGoogle Scholar
  49. [49]
    Jin, Y. S.; Wang, H. T.; Li, J. J.; Yue, X.; Han, Y. J.; Shen, P. K.; Cui, Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2016, 28, 3785–3790.CrossRefGoogle Scholar
  50. [50]
    Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J. G.; Guan, M. Y.; Lin, M.-C.; Zhang, B.; Hu, Y. F.; Wang, D.-Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Pengsong Li
    • 1
  • Qixian Xie
    • 1
  • Lirong Zheng
    • 4
  • Guang Feng
    • 1
  • Yingjie Li
    • 1
  • Zhao Cai
    • 1
  • Yongmin Bi
    • 1
  • Yaping Li
    • 1
  • Yun Kuang
    • 1
  • Xiaoming Sun
    • 1
    • 2
    • 3
  • Xue Duan
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.College of EnergyBeijing University of Chemical TechnologyBeijingChina
  3. 3.Beijing Advanced Innovation Centre for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  4. 4.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations