Nano Research

, Volume 10, Issue 9, pp 2977–2987 | Cite as

Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations

  • Muwei Ji
  • Xinyuan Li
  • Hongzhi Wang
  • Liu Huang
  • Meng Xu
  • Jia Liu
  • Jiajia Liu
  • Jin Wang
  • Jiatao Zhang
Research Article
  • 113 Downloads

Abstract

Yolk/shell (Y–S) hybrid nanoarchitectures, owing to the interior voids created for individualized catalyst applications, have emerged as new candidates for effectively isolating catalytic species. However, the well-defined hollow interiors with flexible core and shell compositions—such as noble-metal cores, metal-oxide cores, and widespread semiconductor shells—and a flexible anisotropic shape are far from the requirements. In particular, the introduction of catalytic noble metals or metal-oxide nanocrystals (NCs) with isotropic or anisotropic shapes into various hollow semiconductor structures with well-defined morphologies has been rarely reported but is urgently needed. Herein, we propose a strategy involving the careful sulfuration of as-prepared cavity-free core/shell NCs or metal-oxide NCs followed by phosphine-initialized cation-exchange reactions for preparing metal@semiconductor and metal oxide@semiconductor (II-VI) Y–S NCs. The geometry, size, and conformations of the core and shell are fully and independently considered. New and unprecendented metal@semiconductor and metal oxide@semiconductor (II-VI) Y–S NCs are prepared via widespread phosphine-initialized cation-exchange reactions.

Keywords

anion exchange cation exchange yolk/shell colloidal hybrid nanocrystals metal/semiconductor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1508_MOESM1_ESM.pdf (7.1 mb)
Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations

References

  1. [1]
    Lee, J.; Hernandez, P.; Lee, J.; Govorov, A. O.; Kotov, N. A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 2007, 6, 291–295.CrossRefGoogle Scholar
  2. [2]
    Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.CrossRefGoogle Scholar
  3. [3]
    Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.CrossRefGoogle Scholar
  4. [4]
    Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.CrossRefGoogle Scholar
  5. [5]
    Su, B.; Guo, W.; Jiang, L. Learning from nature: Binary cooperative complementary nanomaterials. Small 2015, 11, 1072–1096.CrossRefGoogle Scholar
  6. [6]
    Liu, M. J.; Jiang, L. Dialectics of nature in materials science: Binary cooperative complementary materials. Sci. China Mater. 2016, 59, 239–246.CrossRefGoogle Scholar
  7. [7]
    Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91–95.CrossRefGoogle Scholar
  8. [8]
    Lee, J.; Yang, J.; Kwon, S. G.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 2016, 1, 16034.CrossRefGoogle Scholar
  9. [9]
    Yang, P. D.; Tarascon, J. M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560–563.CrossRefGoogle Scholar
  10. [10]
    Mark, A. G.; Gibbs, J. G.; Lee, T. C.; Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 2013, 12, 802–807.CrossRefGoogle Scholar
  11. [11]
    Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013–6047.CrossRefGoogle Scholar
  12. [12]
    Zhang, L. Q.; Qian, K.; Wang, X. P.; Zhang, F.; Shi, X.; Jiang, Y. J.; Liu, S. M.; Jaroniec, M.; Liu, J. Yolk–shellstructured aluminum phenylphosphonate microspheres with anionic core and cationic shell. Adv. Sci. 2016, 3, 1500363.CrossRefGoogle Scholar
  13. [13]
    Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.CrossRefGoogle Scholar
  14. [14]
    Prieto, G.; Tüysü z, H.; Duyckaerts, N.; Knossalla, J.; Wang, G. H.; Schü th, F. Hollow nano- and microstructures as catalysts. Chem. Rev. 2016, 116, 14056–14119.CrossRefGoogle Scholar
  15. [15]
    Priebe, M.; Fromm, K. M. Nanorattles or yolk–shell nanoparticles—What are they, how are they made, and what are they good for? Chem.—Eur. J. 2015, 21, 3854–3874.CrossRefGoogle Scholar
  16. [16]
    Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.CrossRefGoogle Scholar
  17. [17]
    Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.CrossRefGoogle Scholar
  18. [18]
    Yang, Y.; Liu, X.; Li, X. B.; Zhao, J.; Bai, S. Y.; Liu, J.; Yang, Q. H. A yolk–shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem., Int. Ed. 2012, 51, 9164–9168.CrossRefGoogle Scholar
  19. [19]
    Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.CrossRefGoogle Scholar
  20. [20]
    Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009, 2, 583–591.CrossRefGoogle Scholar
  21. [21]
    Liang, X. L.; Li, J.; Joo, J. B.; Gutiérrez, A.; Tillekaratne, A.; Lee, I.; Yin, Y. D.; Zaera, F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew. Chem., Int. Ed. 2012, 124, 8158–8160.CrossRefGoogle Scholar
  22. [22]
    Lee, I.; Joo, J. B.; Yin, Y. D.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem., Int. Ed. 2011, 50, 10208–10211.CrossRefGoogle Scholar
  23. [23]
    Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commum. 2011, 47, 12578–12591.CrossRefGoogle Scholar
  24. [24]
    Kim, J. G.; Kim, S. M.; Lee, I. S. Mechanistic insight into the yolk@shell transformation of MnO@Silica nanospheres incorporating Ni2+ ions toward a colloidal hollow nanoreactor. Small 2015, 11, 1930–1938.CrossRefGoogle Scholar
  25. [25]
    Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, R. B.; Qi, J.; Mao, D.; Zhao, H. J.; Wang, D. pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv. Sci. 2014, 1, 1400011.CrossRefGoogle Scholar
  26. [26]
    Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673–4681.CrossRefGoogle Scholar
  27. [27]
    Meir, N.; Plante, I. J.; Flomin, K.; Chockler, E.; Moshofsky, B.; Diab, M.; Volokh, M.; Mokari, T. Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)–Cu2O core–shell nanostructures grown via a general approach. J. Mater. Chem. A 2013, 1, 1763–1769.CrossRefGoogle Scholar
  28. [28]
    Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk–shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892–1899.CrossRefGoogle Scholar
  29. [29]
    Kuo, C. H.; Chu, Y. T.; Song, Y. F.; Huang, M. H. Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study. Adv. Funct. Mater. 2011, 21, 792–797.CrossRefGoogle Scholar
  30. [30]
    Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.CrossRefGoogle Scholar
  31. [31]
    Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk–shell titanate microspheres with ultrathin nanosheetsassembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.CrossRefGoogle Scholar
  32. [32]
    Pang, M. L.; Wang, Q. X.; Zeng, H. C. Self-generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au nanostructures. Chem.—Eur. J. 2012, 18, 14605–14609.CrossRefGoogle Scholar
  33. [33]
    Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595–1601.CrossRefGoogle Scholar
  34. [34]
    Yang, T. Y.; Liu, J.; Zheng Y.; Monteiro, M. J.; Qiao, S. Z. Facile fabrication of core–shell-structured Ag@Carbon and mesoporous yolk–shell-structured Ag@carbon@silica by an extended stöber method. Chem.—Eur. J. 2013, 19, 6942–6945.CrossRefGoogle Scholar
  35. [35]
    Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.CrossRefGoogle Scholar
  36. [36]
    An, K.; Kwon, S. G.; Park, M.; Na, H. B.; Baik, S. I.; Yu, J. H.; Kim, D.; Son, J. S.; Kim, Y. W.; Song, I. C. et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 2008, 8, 4252–4258.CrossRefGoogle Scholar
  37. [37]
    Wang, L. Z.; Tang, F. Q.; Ozawa, K.; Chen, Z. G.; Mukherj, A.; Zhu, Y. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. A general single-source route for the preparation of hollow nanoporous metal oxide structures. Angew. Chem., Int. Ed. 2009, 48, 7048–7051.Google Scholar
  38. [38]
    Guria, A. K.; Prusty, G.; Patra, B. K.; Pradhan, N. Dopantcontrolled selenization in Pd nanocrystals: The triggered Kirkendall effect. J. Am. Chem. Soc. 2015, 137, 5123–5129.CrossRefGoogle Scholar
  39. [39]
    Jiao, S. H.; Xu, L. F.; Jiang, K.; Xu, D. S. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv. Mater. 2006, 18, 1174–1177.CrossRefGoogle Scholar
  40. [40]
    Wu, H. L.; Sato, R.; Yamaguchi, A.; Kimura, M.; Haruta, M.; Kurata, H.; Teranishi, T. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions. Science 2016, 351, 1306–1310.CrossRefGoogle Scholar
  41. [41]
    Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738–4741.CrossRefGoogle Scholar
  42. [42]
    Powell, A. E.; Hodges, J. M.; Schaak, R. E. Preserving both anion and cation sublattice features during a nanocrystal cation-exchange reaction: Synthesis of metastable wurtzitetype CoS and MnS. J. Am. Chem. Soc. 2016, 138, 471–474.CrossRefGoogle Scholar
  43. [43]
    Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem., Int. Ed. 2015, 54, 3683–3687.CrossRefGoogle Scholar
  44. [44]
    Kostopoulou, A.; Thétiot, F.; Tsiaoussis, I.; Androulidaki, M.; Cozzoli, P. D.; Lappas, A. Colloidal anisotropic ZnO-Fe@FexOy nanoarchitectures with interface-mediated exchange-bias and band-edge ultraviolet fluorescence. Chem. Mater. 2012, 24, 2722–2732.CrossRefGoogle Scholar
  45. [45]
    Li, Z.; Foley, J. J., IV; Peng, S.; Sun, C. J.; Ren, Y.; Wiederrecht, G. P.; Gray, S. K.; Sun, Y. G. Reversible modulation of surface plasmons in gold nanoparticles enabled by surface redox chemistry. Angew. Chem., Int. Ed. 2015, 54, 8948–8951.CrossRefGoogle Scholar
  46. [46]
    Zhao, W. W.; Zhang, C.; Geng, F. Y.; Zhuo, S. F.; Zhang, B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 2014, 8, 10909–10919.CrossRefGoogle Scholar
  47. [47]
    Park, J.; Zheng, H. M.; Jun, Y. W.; Alivisatos, A. P. Heteroepitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.CrossRefGoogle Scholar
  48. [48]
    Hodges, J. M.; Kletetschka, K.; Fenton, J. L.; Read, C. G.; Schaak, R. E. Sequential anion and cation exchange reactions for complete material transformations of nanoparticles with morphological retention. Angew. Chem., Int. Ed. 2015, 127, 8793–8796.CrossRefGoogle Scholar
  49. [49]
    Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbonnanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.CrossRefGoogle Scholar
  50. [50]
    Zhang, L.; Blom, D. A.; Wang, H. Au–Cu2O core–shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater. 2011, 23, 4587–4598.CrossRefGoogle Scholar
  51. [51]
    Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.CrossRefGoogle Scholar
  52. [52]
    Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.CrossRefGoogle Scholar
  53. [53]
    Zhang, J. T.; Liu, J. F.; Peng, Q.; Wang, X.; Li, Y. D. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 18, 867–871.CrossRefGoogle Scholar
  54. [54]
    Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.CrossRefGoogle Scholar
  55. [55]
    Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225.CrossRefGoogle Scholar
  56. [56]
    Macdonald, J. E.; Sadan, M. B.; Houben, L.; Popov, I.; Banin, U. Hybrid nanoscale inorganic cages. Nat. Mater. 2010, 9, 810–815.CrossRefGoogle Scholar
  57. [57]
    Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061.CrossRefGoogle Scholar
  58. [58]
    Jayalakshmi, M.; Mohan Rao, M.; Choudary, B. M. Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions. Electrochem. Commun. 2004, 6, 1119–1122.CrossRefGoogle Scholar
  59. [59]
    Choi, S. H.; Kang, Y. C. Synergetic effect of yolk–shell structure and uniform mixing of SnS–MoS2 nanocrystals for improved Na-ion storage capabilities. ACS Appl. Mater. Interfaces 2015, 7, 24694–24702.CrossRefGoogle Scholar
  60. [60]
    Li, L.; Chen, Z.; Hu, Y.; Wang, X. W.; Zhang, T.; Chen, W.; Wang, Q. B. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216.CrossRefGoogle Scholar
  61. [61]
    Patra, B. K.; Guria, A. K.; Dutta, A.; Shit, A.; Pradhan, N. Au-SnS hetero nanostructures: Size of Au matters. Chem. Mater. 2014, 26, 7194–7200.CrossRefGoogle Scholar
  62. [62]
    Biacchi, A. J.; Vaughn, D. D., II; Schaak, R. E. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: Evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 2013, 135, 11634–11644.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Muwei Ji
    • 1
    • 2
  • Xinyuan Li
    • 1
  • Hongzhi Wang
    • 1
  • Liu Huang
    • 1
  • Meng Xu
    • 1
  • Jia Liu
    • 1
  • Jiajia Liu
    • 1
  • Jin Wang
    • 2
  • Jiatao Zhang
    • 1
  1. 1.Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations