Nano Research

, Volume 10, Issue 9, pp 2977–2987 | Cite as

Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations

  • Muwei Ji
  • Xinyuan Li
  • Hongzhi Wang
  • Liu Huang
  • Meng Xu
  • Jia Liu
  • Jiajia Liu
  • Jin Wang
  • Jiatao Zhang
Research Article


Yolk/shell (Y–S) hybrid nanoarchitectures, owing to the interior voids created for individualized catalyst applications, have emerged as new candidates for effectively isolating catalytic species. However, the well-defined hollow interiors with flexible core and shell compositions—such as noble-metal cores, metal-oxide cores, and widespread semiconductor shells—and a flexible anisotropic shape are far from the requirements. In particular, the introduction of catalytic noble metals or metal-oxide nanocrystals (NCs) with isotropic or anisotropic shapes into various hollow semiconductor structures with well-defined morphologies has been rarely reported but is urgently needed. Herein, we propose a strategy involving the careful sulfuration of as-prepared cavity-free core/shell NCs or metal-oxide NCs followed by phosphine-initialized cation-exchange reactions for preparing metal@semiconductor and metal oxide@semiconductor (II-VI) Y–S NCs. The geometry, size, and conformations of the core and shell are fully and independently considered. New and unprecendented metal@semiconductor and metal oxide@semiconductor (II-VI) Y–S NCs are prepared via widespread phosphine-initialized cation-exchange reactions.


anion exchange cation exchange yolk/shell colloidal hybrid nanocrystals metal/semiconductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 21322105, 91323301, 51631001, 51372025, and 51501010).

Supplementary material

12274_2017_1508_MOESM1_ESM.pdf (7.1 mb)
Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations


  1. [1]
    Lee, J.; Hernandez, P.; Lee, J.; Govorov, A. O.; Kotov, N. A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 2007, 6, 291–295.CrossRefGoogle Scholar
  2. [2]
    Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.CrossRefGoogle Scholar
  3. [3]
    Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.CrossRefGoogle Scholar
  4. [4]
    Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.CrossRefGoogle Scholar
  5. [5]
    Su, B.; Guo, W.; Jiang, L. Learning from nature: Binary cooperative complementary nanomaterials. Small 2015, 11, 1072–1096.CrossRefGoogle Scholar
  6. [6]
    Liu, M. J.; Jiang, L. Dialectics of nature in materials science: Binary cooperative complementary materials. Sci. China Mater. 2016, 59, 239–246.CrossRefGoogle Scholar
  7. [7]
    Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91–95.CrossRefGoogle Scholar
  8. [8]
    Lee, J.; Yang, J.; Kwon, S. G.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 2016, 1, 16034.CrossRefGoogle Scholar
  9. [9]
    Yang, P. D.; Tarascon, J. M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560–563.CrossRefGoogle Scholar
  10. [10]
    Mark, A. G.; Gibbs, J. G.; Lee, T. C.; Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 2013, 12, 802–807.CrossRefGoogle Scholar
  11. [11]
    Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013–6047.CrossRefGoogle Scholar
  12. [12]
    Zhang, L. Q.; Qian, K.; Wang, X. P.; Zhang, F.; Shi, X.; Jiang, Y. J.; Liu, S. M.; Jaroniec, M.; Liu, J. Yolk–shellstructured aluminum phenylphosphonate microspheres with anionic core and cationic shell. Adv. Sci. 2016, 3, 1500363.CrossRefGoogle Scholar
  13. [13]
    Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.CrossRefGoogle Scholar
  14. [14]
    Prieto, G.; Tüysü z, H.; Duyckaerts, N.; Knossalla, J.; Wang, G. H.; Schü th, F. Hollow nano- and microstructures as catalysts. Chem. Rev. 2016, 116, 14056–14119.CrossRefGoogle Scholar
  15. [15]
    Priebe, M.; Fromm, K. M. Nanorattles or yolk–shell nanoparticles—What are they, how are they made, and what are they good for? Chem.—Eur. J. 2015, 21, 3854–3874.CrossRefGoogle Scholar
  16. [16]
    Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.CrossRefGoogle Scholar
  17. [17]
    Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.CrossRefGoogle Scholar
  18. [18]
    Yang, Y.; Liu, X.; Li, X. B.; Zhao, J.; Bai, S. Y.; Liu, J.; Yang, Q. H. A yolk–shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem., Int. Ed. 2012, 51, 9164–9168.CrossRefGoogle Scholar
  19. [19]
    Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.CrossRefGoogle Scholar
  20. [20]
    Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009, 2, 583–591.CrossRefGoogle Scholar
  21. [21]
    Liang, X. L.; Li, J.; Joo, J. B.; Gutiérrez, A.; Tillekaratne, A.; Lee, I.; Yin, Y. D.; Zaera, F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew. Chem., Int. Ed. 2012, 124, 8158–8160.CrossRefGoogle Scholar
  22. [22]
    Lee, I.; Joo, J. B.; Yin, Y. D.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem., Int. Ed. 2011, 50, 10208–10211.CrossRefGoogle Scholar
  23. [23]
    Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commum. 2011, 47, 12578–12591.CrossRefGoogle Scholar
  24. [24]
    Kim, J. G.; Kim, S. M.; Lee, I. S. Mechanistic insight into the yolk@shell transformation of MnO@Silica nanospheres incorporating Ni2+ ions toward a colloidal hollow nanoreactor. Small 2015, 11, 1930–1938.CrossRefGoogle Scholar
  25. [25]
    Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, R. B.; Qi, J.; Mao, D.; Zhao, H. J.; Wang, D. pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv. Sci. 2014, 1, 1400011.CrossRefGoogle Scholar
  26. [26]
    Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673–4681.CrossRefGoogle Scholar
  27. [27]
    Meir, N.; Plante, I. J.; Flomin, K.; Chockler, E.; Moshofsky, B.; Diab, M.; Volokh, M.; Mokari, T. Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)–Cu2O core–shell nanostructures grown via a general approach. J. Mater. Chem. A 2013, 1, 1763–1769.CrossRefGoogle Scholar
  28. [28]
    Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk–shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892–1899.CrossRefGoogle Scholar
  29. [29]
    Kuo, C. H.; Chu, Y. T.; Song, Y. F.; Huang, M. H. Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study. Adv. Funct. Mater. 2011, 21, 792–797.CrossRefGoogle Scholar
  30. [30]
    Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.CrossRefGoogle Scholar
  31. [31]
    Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk–shell titanate microspheres with ultrathin nanosheetsassembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.CrossRefGoogle Scholar
  32. [32]
    Pang, M. L.; Wang, Q. X.; Zeng, H. C. Self-generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au nanostructures. Chem.—Eur. J. 2012, 18, 14605–14609.CrossRefGoogle Scholar
  33. [33]
    Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595–1601.CrossRefGoogle Scholar
  34. [34]
    Yang, T. Y.; Liu, J.; Zheng Y.; Monteiro, M. J.; Qiao, S. Z. Facile fabrication of core–shell-structured Ag@Carbon and mesoporous yolk–shell-structured Ag@carbon@silica by an extended stöber method. Chem.—Eur. J. 2013, 19, 6942–6945.CrossRefGoogle Scholar
  35. [35]
    Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.CrossRefGoogle Scholar
  36. [36]
    An, K.; Kwon, S. G.; Park, M.; Na, H. B.; Baik, S. I.; Yu, J. H.; Kim, D.; Son, J. S.; Kim, Y. W.; Song, I. C. et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 2008, 8, 4252–4258.CrossRefGoogle Scholar
  37. [37]
    Wang, L. Z.; Tang, F. Q.; Ozawa, K.; Chen, Z. G.; Mukherj, A.; Zhu, Y. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. A general single-source route for the preparation of hollow nanoporous metal oxide structures. Angew. Chem., Int. Ed. 2009, 48, 7048–7051.Google Scholar
  38. [38]
    Guria, A. K.; Prusty, G.; Patra, B. K.; Pradhan, N. Dopantcontrolled selenization in Pd nanocrystals: The triggered Kirkendall effect. J. Am. Chem. Soc. 2015, 137, 5123–5129.CrossRefGoogle Scholar
  39. [39]
    Jiao, S. H.; Xu, L. F.; Jiang, K.; Xu, D. S. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv. Mater. 2006, 18, 1174–1177.CrossRefGoogle Scholar
  40. [40]
    Wu, H. L.; Sato, R.; Yamaguchi, A.; Kimura, M.; Haruta, M.; Kurata, H.; Teranishi, T. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions. Science 2016, 351, 1306–1310.CrossRefGoogle Scholar
  41. [41]
    Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738–4741.CrossRefGoogle Scholar
  42. [42]
    Powell, A. E.; Hodges, J. M.; Schaak, R. E. Preserving both anion and cation sublattice features during a nanocrystal cation-exchange reaction: Synthesis of metastable wurtzitetype CoS and MnS. J. Am. Chem. Soc. 2016, 138, 471–474.CrossRefGoogle Scholar
  43. [43]
    Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem., Int. Ed. 2015, 54, 3683–3687.CrossRefGoogle Scholar
  44. [44]
    Kostopoulou, A.; Thétiot, F.; Tsiaoussis, I.; Androulidaki, M.; Cozzoli, P. D.; Lappas, A. Colloidal anisotropic ZnO-Fe@FexOy nanoarchitectures with interface-mediated exchange-bias and band-edge ultraviolet fluorescence. Chem. Mater. 2012, 24, 2722–2732.CrossRefGoogle Scholar
  45. [45]
    Li, Z.; Foley, J. J., IV; Peng, S.; Sun, C. J.; Ren, Y.; Wiederrecht, G. P.; Gray, S. K.; Sun, Y. G. Reversible modulation of surface plasmons in gold nanoparticles enabled by surface redox chemistry. Angew. Chem., Int. Ed. 2015, 54, 8948–8951.CrossRefGoogle Scholar
  46. [46]
    Zhao, W. W.; Zhang, C.; Geng, F. Y.; Zhuo, S. F.; Zhang, B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 2014, 8, 10909–10919.CrossRefGoogle Scholar
  47. [47]
    Park, J.; Zheng, H. M.; Jun, Y. W.; Alivisatos, A. P. Heteroepitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.CrossRefGoogle Scholar
  48. [48]
    Hodges, J. M.; Kletetschka, K.; Fenton, J. L.; Read, C. G.; Schaak, R. E. Sequential anion and cation exchange reactions for complete material transformations of nanoparticles with morphological retention. Angew. Chem., Int. Ed. 2015, 127, 8793–8796.CrossRefGoogle Scholar
  49. [49]
    Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbonnanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.CrossRefGoogle Scholar
  50. [50]
    Zhang, L.; Blom, D. A.; Wang, H. Au–Cu2O core–shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater. 2011, 23, 4587–4598.CrossRefGoogle Scholar
  51. [51]
    Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.CrossRefGoogle Scholar
  52. [52]
    Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.CrossRefGoogle Scholar
  53. [53]
    Zhang, J. T.; Liu, J. F.; Peng, Q.; Wang, X.; Li, Y. D. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 18, 867–871.CrossRefGoogle Scholar
  54. [54]
    Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.CrossRefGoogle Scholar
  55. [55]
    Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225.CrossRefGoogle Scholar
  56. [56]
    Macdonald, J. E.; Sadan, M. B.; Houben, L.; Popov, I.; Banin, U. Hybrid nanoscale inorganic cages. Nat. Mater. 2010, 9, 810–815.CrossRefGoogle Scholar
  57. [57]
    Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061.CrossRefGoogle Scholar
  58. [58]
    Jayalakshmi, M.; Mohan Rao, M.; Choudary, B. M. Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions. Electrochem. Commun. 2004, 6, 1119–1122.CrossRefGoogle Scholar
  59. [59]
    Choi, S. H.; Kang, Y. C. Synergetic effect of yolk–shell structure and uniform mixing of SnS–MoS2 nanocrystals for improved Na-ion storage capabilities. ACS Appl. Mater. Interfaces 2015, 7, 24694–24702.CrossRefGoogle Scholar
  60. [60]
    Li, L.; Chen, Z.; Hu, Y.; Wang, X. W.; Zhang, T.; Chen, W.; Wang, Q. B. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216.CrossRefGoogle Scholar
  61. [61]
    Patra, B. K.; Guria, A. K.; Dutta, A.; Shit, A.; Pradhan, N. Au-SnS hetero nanostructures: Size of Au matters. Chem. Mater. 2014, 26, 7194–7200.CrossRefGoogle Scholar
  62. [62]
    Biacchi, A. J.; Vaughn, D. D., II; Schaak, R. E. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: Evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 2013, 135, 11634–11644.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Muwei Ji
    • 1
    • 2
  • Xinyuan Li
    • 1
  • Hongzhi Wang
    • 1
  • Liu Huang
    • 1
  • Meng Xu
    • 1
  • Jia Liu
    • 1
  • Jiajia Liu
    • 1
  • Jin Wang
    • 2
  • Jiatao Zhang
    • 1
  1. 1.Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations