Nano Research

, Volume 10, Issue 9, pp 2966–2976 | Cite as

Flower-like C@SnO X @C hollow nanostructures with enhanced electrochemical properties for lithium storage

Research Article


Hollow nanostructures have attracted considerable attention owing to their large surface area, tunable cavity, and low density. In this study, a unique flower-like C@SnO X @C hollow nanostructure (denoted as C@SnO X @C-1) was synthesized through a novel one-pot approach. The C@SnO X @C-1 had a hollow carbon core and interlaced petals on the shell. Each petal was a SnO2 nanosheet coated with an ultrathin carbon layer ~2 nm thick. The generation of the hollow carbon core, the growth of the SnO2 nanosheets, and the coating of the carbon layers were simultaneously completed via a hydrothermal process using resorcinol-formaldehyde resin-coated SiO2 nanospheres, tin chloride, urea, and glucose as precursors. The resultant architecture with a large surface area exhibited excellent lithium-storage performance, delivering a high reversible capacity of 756.9 mA·h·g–1 at a current density of 100 mA·g–1 after 100 cycles.


C@SnOX@C hollow nanostructure nanosheets carbon coating anodes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21471096 and 21371116), and Program for Innovative Research Team in University (No. IRT13078). We thank the Lab for Microstructure, Instrumental Analysis & Research Center, Shanghai University, for materials characterizations.

Supplementary material

12274_2017_1507_MOESM1_ESM.pdf (3.9 mb)
Flower-like C@SnO X @C hollow nanostructures with enhanced electrochemical properties for lithium storage


  1. [1]
    Todd, A. D. W.; Ferguson, P. P.; Fleischauer, M. D.; Dahn, J. R. Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods. Int. J. Energ. Res. 2010, 34, 535–555.CrossRefGoogle Scholar
  2. [2]
    Yu, S. H.; Lee, D. J.; Park, M.; Kwon, S. G.; Lee, H. S.; Jin, A. H.; Lee, K. S.; Lee, J. E.; Oh, M. H.; Kang, K. et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes. J. Am. Chem. Soc. 2015, 137, 11954–11961.CrossRefGoogle Scholar
  3. [3]
    Liu, J. Y.; Chen, X.; Kim, J.; Zheng, Q. Y.; Ning, H. L.; Sun, P. C.; Huang, X. J.; Liu, J. H.; Niu, J. J.; Braun, P. V. High volumetric capacity three-dimensionally sphere-caged secondary battery anodes. Nano Lett. 2016, 16, 4501–4507.CrossRefGoogle Scholar
  4. [4]
    Huang, B.; Li, X. H.; Pei, Y.; Li, S.; Cao, X.; Massé, R. C.; Cao, G. Z. Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 2016, 12, 1945–1955.CrossRefGoogle Scholar
  5. [5]
    Yang, L.; Dai, T.; Wang, Y. C.; Xie, D. G.; Narayan, R. L.; Li, J.; Ning, X. H. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties. Nano Energy 2016, 30, 885–891.CrossRefGoogle Scholar
  6. [6]
    Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.CrossRefGoogle Scholar
  7. [7]
    Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.CrossRefGoogle Scholar
  8. [8]
    Yang, H. X.; Qian, J. F.; Chen, Z. X.; Ai, X. P.; Cao, Y. L. Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment. J. Phys. Chem. C 2007, 111, 14067–14071.CrossRefGoogle Scholar
  9. [9]
    Chen, W. X.; Zhang, H.; Huang, Y. Q.; Wang, W. K. A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 2010, 20, 4773–4775.CrossRefGoogle Scholar
  10. [10]
    Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.CrossRefGoogle Scholar
  11. [11]
    Wen, Z. H.; Cui, S. M.; Kim, H.; Mao, S.; Yu, K. H.; Lu, G. H.; Pu, H. H.; Mao, O.; Chen, J. H. Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. J. Mater. Chem. 2012, 22, 3300–3306.CrossRefGoogle Scholar
  12. [12]
    Xu, W. W.; Cui, X. D.; Xie, Z. Q.; Dietrich, G.; Wang, Y. Three-dimensional coral-like structure constructed of carboncoated interconnected monocrystalline SnO2 nanoparticles with improved lithium-storage properties. ChemElectroChem 2016, 3, 1098–1106.CrossRefGoogle Scholar
  13. [13]
    Li, Y.; Meng, Q.; Ma, J.; Zhu, C. L.; Cui, J. R.; Chen, Z. X.; Guo, Z. P.; Zhang, T.; Zhu, S. M.; Zhang, D. Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 2015, 7, 11146–11154.CrossRefGoogle Scholar
  14. [14]
    Yu, C. L.; Yu, J. C.; Wang, F.; Wen, H. R.; Tang, Y. Z. Growth of single-crystalline SnO2 nanocubes via a hydrothermal route. CrystEngComm 2010, 12, 341–343.CrossRefGoogle Scholar
  15. [15]
    Chandiran, A. K.; Comte, P.; Humphry-Baker, R.; Kessler, F.; Yi, C. Y.; Nazeeruddin, M. K.; Grä tzel, M. Evaluating the critical thickness of TiO2 layer on insulating mesoporous templates for efficient current collection in dye-sensitized solar cells. Adv. Funct. Mater. 2013, 23, 2775–2781.CrossRefGoogle Scholar
  16. [16]
    Lee, D. H.; Park, J. G.; Choi, K. J.; Kim, D. W. Preparation of brookite-type TiO2/Carbon nanocomposite electrodes for application to Li ion batteries. Eur. J. Inorg. Chem. 2008, 6, 878–882.CrossRefGoogle Scholar
  17. [17]
    Moriguchi, I.; Hidaka, R.; Yamada, H.; Kudo, T.; Murakami, H.; Nakashima, N. A mesoporous nanocomposite of TiO2 and Carbon nanotubes as a high-rate Li-intercalation electrode material. Adv. Mater. 2006, 18, 69–73.CrossRefGoogle Scholar
  18. [18]
    Zhang, H. J.; He, Q. Q.; Wei, F. J.; Tan, Y. J.; Jiang, Y.; Zheng, G. H.; Ding, G. J.; Jiao, Z. Ultrathin SnO nanosheets as anode materials for rechargeable lithium-ion batteries. Mater. Lett. 2014, 120, 200–203.CrossRefGoogle Scholar
  19. [19]
    Joshi, P.; Xie, Y.; Ropp, M.; Galipeau, D.; Bailey, S.; Qiao, Q. Q. Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy Environ. Sci. 2009, 2, 426–429.CrossRefGoogle Scholar
  20. [20]
    Moon, T.; Kim, C.; Hwang, S. T.; Park, B. Electrochemical properties of disordered-carbon-coated SnO2 nanoparticles for Li rechargeable batteries. Electrochem. Solid-State Lett. 2006, 9, A408–A411.CrossRefGoogle Scholar
  21. [21]
    Hu, H.; Cheng, H. Y.; Li, G. J.; Liu, J. P.; Yu, Y. Design of SnO2/C hybrid triple-layer nanospheres as Li-ion battery anodes with high stability and rate capability. J. Mater. Chem. A 2015, 3, 2748–2755.CrossRefGoogle Scholar
  22. [22]
    Li, Y.; Zhu, S. M.; Liu, Q. L.; Gu, J. J.; Guo, Z. P.; Chen, Z. X.; Feng, C. L.; Zhang, D.; Moon, W. J. Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. J. Mater. Chem. 2012, 22, 2766–2773.CrossRefGoogle Scholar
  23. [23]
    Zhou, M. J.; Liu, Y. C.; Chen, J.; Yang, X. L. Double shelled hollow SnO2/polymer microsphere as a high-capacity anode material for superior reversible lithium ion storage. J. Mater. Chem. A 2015, 3, 1068–1076.CrossRefGoogle Scholar
  24. [24]
    Tian, Q. H.; Tian, Y.; Zhang, Z. X.; Yang, L.; Hirano, S. Double-shelled support and confined void strategy to improve the lithium storage properties of SnO2/C anode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 18036–18044.CrossRefGoogle Scholar
  25. [25]
    Kim, A. Y.; Kim, J. S.; Hudaya, C.; Xiao, D. D.; Byun, D.; Gu, L.; Wei, X.; Yao, Y.; Yu, R. C.; Lee, J. K. An elastic carbon layer on echeveria-inspired SnO2 anode for longcycle and high-rate lithium ion batteries. Carbon 2015, 94, 539–547.CrossRefGoogle Scholar
  26. [26]
    Li, Z. T.; Wang, Y. K.; Sun, H. D.; Wu, W. T.; Liu, M.; Zhou, J. Y.; Wu, G. L.; Wu, M. B. Synthesis of nanocomposites with carbon-SnO2 dual-shells on TiO2 nanotubes and their application in lithium ion batteries. J. Mater. Chem. A 2015, 3, 16057–16063.CrossRefGoogle Scholar
  27. [27]
    Wang, J. X.; Li, W.; Wang, F.; Xia, Y. Y.; Asiri, A. M.; Zhao, D. Y. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. Nanoscale 2014, 6, 3217–3222.CrossRefGoogle Scholar
  28. [28]
    Luo, B.; Qiu, T. F.; Ye, D. L.; Wang, L. Z.; Zhi, L. J. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232–240.CrossRefGoogle Scholar
  29. [29]
    Gao, R. M.; Zhang, H. J.; Yuan, S.; Shi, L. Y.; Wu, M. H.; Jiao, Z. Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Adv. 2016, 6, 4116–4127.CrossRefGoogle Scholar
  30. [30]
    Pan, X. Y.; Yi, Z. G. Graphene oxide regulated tin oxide nanostructures: Engineering composition, morphology, band structure, and photocatalytic properties. ACS Appl. Mater. Interfaces 2015, 7, 27167–27175.CrossRefGoogle Scholar
  31. [31]
    Li, Y. Y.; Zhang, H. Y.; Chen, Y. M.; Shi, Z. C.; Cao, X. G.; Guo, Z. P.; Shen, P. K. Nitrogen-doped carbon-encapsulated SnO2@Sn nanoparticles uniformly grafted on three-dimensional graphene-like networks as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 197–207.CrossRefGoogle Scholar
  32. [32]
    Hao, B.; Yan, Y.; Wang, X. B.; Chen, G. Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. ACS Appl. Mater. Interfaces 2013, 5, 6285–6291.CrossRefGoogle Scholar
  33. [33]
    Ren, L.; Liu, Y. D.; Qi, X.; Hui, K. S.; Hui, K. N.; Huang, Z. Y.; Li, J.; Huang, K.; Zhong, J. X. An architectured TiO2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteries. J. Mater. Chem. 2012, 22, 21513–21518.CrossRefGoogle Scholar
  34. [34]
    Wang, Z. Y.; Sha, J. W.; Liu, E. Z.; He, C. N.; Shi, C. S.; Li, J. J.; Zhao, N. Q. A large ultrathin anatase TiO2 nanosheet/ reduced graphene oxide composite with enhanced lithium storage capability. J. Mater. Chem. A 2014, 2, 8893–8901.CrossRefGoogle Scholar
  35. [35]
    Wu, P.; Du, N.; Zhang, H.; Yu, J. X.; Qi, Y.; Yang, D. R. Carbon-coated SnO2 nanotubes: Template-engaged synthesis and their application in lithium-ion batteries. Nanoscale 2011, 3, 746–750.CrossRefGoogle Scholar
  36. [36]
    Kong, Q. D.; Li, X. L.; Zhang, Y. B.; Hai, X.; Wang, B.; Qiu, X. Y.; Song, Q.; Yang, Q. H.; Zhi, L. J. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ. Sci. 2016, 9, 906–911.CrossRefGoogle Scholar
  37. [37]
    He, H. Y.; Kong, D. B.; Wang, B.; Fu, W.; Qiu, X. Y.; Yang, Q. H.; Zhi, L. J. Carbon network integrated SnSiOX+2 nanofiber sheathed by ultrathin graphitic carbon for highly reversible lithium storage. Adv. Energy Mater. 2016, 6, 1502495.CrossRefGoogle Scholar
  38. [38]
    Zhao, B.; Jiang, Y.; Zhang, H. J.; Tao, H. H.; Zhong, M. Y.; Jiao, Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 2009, 189, 462–466.CrossRefGoogle Scholar
  39. [39]
    Fuertes, A. B.; Valle-Vigón, P.; Sevilla, M. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 2012, 48, 6124–6126.CrossRefGoogle Scholar
  40. [40]
    Tian, Q. H.; Tian, Y.; Zhang, Z. X.; Yang, L.; Hirano, S. Design and preparation of interconnected quasi-ball-in-ball tin dioxide/carbon composite containing void-space with high lithium storage properties. Carbon 2015, 95, 20–27.CrossRefGoogle Scholar
  41. [41]
    Luo, Y. S.; Luo, J. S.; Zhou, W. W.; Qi, X. Y.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Fan, H. J.; Yu, T. Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 2013, 1, 273–281.CrossRefGoogle Scholar
  42. [42]
    Jahel, A.; Ghimbeu, C. M.; Darwiche, A.; Vidal, L.; Hajjar- Garreau, S.; Vix-Guterl, C.; Monconduit, L. Exceptionally highly performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon. J. Mater. Chem. A 2015, 3, 11960–11969.CrossRefGoogle Scholar
  43. [43]
    Xu, K.; Li, N.; Zeng, D. W.; Tian, S. Q.; Zhang, S. S.; Hu, D.; Xie, C. S. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 11359–11368.CrossRefGoogle Scholar
  44. [44]
    Slater, B.; Catlow, C. R. A.; Gay, D. H.; Williams, D. E.; Dusastre, V. Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. J. Phys. Chem. B 1999, 103, 10644–10650.CrossRefGoogle Scholar
  45. [45]
    Han, X. G.; Jin, M. S.; Xie, S. F.; Kuang, Q.; Jiang, Z. Y.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew. Chem., Int. Ed. 2009, 48, 9180–9183.CrossRefGoogle Scholar
  46. [46]
    Nam, S.; Yang, S. J.; Lee, S.; Kim, J.; Kang, J.; Oh, J. Y.; Park, C. R.; Moo, T.; Lee, K. T.; Park, B. Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon 2015, 85, 289–298.CrossRefGoogle Scholar
  47. [47]
    Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation. J. Power Sources 2011, 196, 6473–6477.CrossRefGoogle Scholar
  48. [48]
    Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006.CrossRefGoogle Scholar
  49. [49]
    Liu, R. Q.; Li, D. Y.; Wang, C.; Li, N.; Li, Q.; Lü, X. J.; Spendelow, J. S.; Wu, G. Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy 2014, 6, 73–81.CrossRefGoogle Scholar
  50. [50]
    Liu, S. H.; Jia, H. P.; Han, L.; Wang, J. L.; Gao, P. F.; Xu, D. D.; Yang, J.; Che, S. N. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries. Adv. Mater. 2012, 24, 3201–3204.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yijia Wang
    • 1
  • Zheng Jiao
    • 2
  • Minghong Wu
    • 2
  • Kun Zheng
    • 3
  • Hongwei Zhang
    • 4
  • Jin Zou
    • 3
  • Chengzhong Yu
    • 4
  • Haijiao Zhang
    • 1
  1. 1.Institute of Nanochemistry and NanobiologyShanghai UniversityShanghaiChina
  2. 2.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  3. 3.Materials Engineering and Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneAustralia
  4. 4.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations