Nano Research

, Volume 10, Issue 9, pp 2954–2965 | Cite as

Determination of the acidic properties of carboxylated carbocatalysts in an acid-catalyzed ring-opening reaction using kinetic profiling

Research Article

Abstract

The acid-catalyzed ring-opening reaction of styrene oxide was used as a probe reaction for evaluating the acidic properties of carboxylated carbocatalysts. Significant discrepancies in the initial reaction rates were normalized using the total number of carboxyl groups, and demonstrated that the average catalytic activities of the carboxyl moieties on the carbocatalysts differed. Comparisons between the apparent activation energy Ea and the pre-exponential factor A, derived from Arrhenius analysis, demonstrated that A varied more significantly, and therefore had a more significant effect on the reaction rates than Ea. The variation in the calculated pKa values of the carboxyl groups was attributed to the electronic effects of the nitro groups. This hypothesis was supported by the temperature programmed desorption profiles of nitrogen monoxide ions.

Keywords

carboxylated carbocatalysts acidic properties ring-opening reaction Arrhenius analysis pKa values electronic effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1506_MOESM1_ESM.pdf (5.3 mb)
Determination of the acidic properties of carboxylated carbocatalysts in an acid-catalyzed ring-opening reaction using kinetic profiling

References

  1. [1]
    Dreyer, D. R.; Bielawski, C. W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2011, 2, 1233–1240.CrossRefGoogle Scholar
  2. [2]
    Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 2014, 114, 6179–6212.CrossRefGoogle Scholar
  3. [3]
    Cao, Y. H.; Yu, H.; Peng, F.; Wang, H. J. Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catal. 2014, 4, 1617–1625.CrossRefGoogle Scholar
  4. [4]
    Li, W. J.; Gao, Y. J.; Chen, W. L.; Tang, P.; Li, W. Z.; Shi, Z. J.; Su, D. S.; Wang, J. G.; Ma, D. Catalytic epoxidation reaction over N-containing sp2 carbon catalysts. ACS Catal. 2014, 4, 1261–1266.CrossRefGoogle Scholar
  5. [5]
    Su, D. S.; Zhang, J.; Frank, B.; Thomas, A.; Wang, X. C.; Paraknowitsch, J.; Schlögl, R. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 2010, 3, 169–180.CrossRefGoogle Scholar
  6. [6]
    Su, D. S.; Centi, G. A perspective on carbon materials for future energy application. J. Energy Chem. 2013, 22, 151–173.CrossRefGoogle Scholar
  7. [7]
    Su, D. S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782–5816.CrossRefGoogle Scholar
  8. [8]
    Zhu, J.; Holmen, A.; Chen, D. Carbon nanomaterials in catalysis: Proton affinity, chemical and electronic properties, and their catalytic consequences. ChemCatChem 2013, 5, 378–401.CrossRefGoogle Scholar
  9. [9]
    Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616–9630.CrossRefGoogle Scholar
  10. [10]
    Lin, Y. M.; Su, D. S. Fabrication of nitrogen-modified annealed nanodiamond with improved catalytic activity. ACS Nano 2014, 8, 7823–7833.CrossRefGoogle Scholar
  11. [11]
    Xue, B.; Zhu, J. G.; Liu, N.; Li, Y. X. Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction. Catal. Commun. 2015, 64, 105–109.CrossRefGoogle Scholar
  12. [12]
    Xu, T. Y.; Zhang, Q. F.; Yang, H. F.; Li, X. N.; Wang, J. G. Role of phenolic groups in the stabilization of palladium nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 9783–9789.CrossRefGoogle Scholar
  13. [13]
    Machado, B. F.; Oubenali, M.; Rosa Axet, M.; TrangNGuyen, T.; Tunckol, M.; Girleanu, M.; Ersen, O.; Gerber, I. C.; Serp, P. Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. J. Catal. 2014, 309, 185–198.CrossRefGoogle Scholar
  14. [14]
    Zhang, L. Y.; Wen, G. D.; Liu, H. Y.; Wang, N.; Su, D. S. Preparation of palladium catalysts supported on carbon nanotubes by an electrostatic adsorption method. ChemCatChem 2014, 6, 2600–2606.CrossRefGoogle Scholar
  15. [15]
    Wen, G. D.; Diao, J. Y.; Wu, S. C.; Yang, W. M.; Schlö gl, R.; Su, D. S. Acid properties of nanocarbons and their application in oxidative dehydrogenation. ACS Catal. 2015, 5, 3600–3608.CrossRefGoogle Scholar
  16. [16]
    Luo, R. C.; Zhou, X. T.; Fang, Y. X.; Ji, H. B. Metal- and solvent-free synthesis of cyclic carbonates from epoxides and CO2 in the presence of graphite oxide and ionic liquid under mild conditions: A kinetic study. Carbon 2015, 82, 1–11.CrossRefGoogle Scholar
  17. [17]
    To, A. T.; Chung, P. W.; Katz, A. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: Importance of post-synthetic functionalization of the carbon surface. Angew. Chem., Int. Ed. 2015, 54, 11050–11053.CrossRefGoogle Scholar
  18. [18]
    Boehm, H. P.; Diehl, E.; Heck, W.; Sappok, R. Surface oxides of carbon. Angew. Chem., Int. Ed. 1964, 3, 669–677.CrossRefGoogle Scholar
  19. [19]
    Boehm, H. P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145–149.CrossRefGoogle Scholar
  20. [20]
    Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfã o, J. J. M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389.CrossRefGoogle Scholar
  21. [21]
    Wu, S. C.; Wen, G. D.; Zhong, B. W.; Zhang, B. S.; Gu, X. M.; Wang, N.; Su, D. S. Reduction of nitrobenzene catalyzed by carbon materials. Chinese J. Catal. 2014, 35, 914–921.CrossRefGoogle Scholar
  22. [22]
    Qi, W.; Liu, W.; Zhang, B. S.; Gu, X. M.; Guo, X. L.; Su, D. S. Oxidative dehydrogenation on nanocarbon: Identification and quantification of active sites by chemical titration. Angew. Chem., Int. Ed. 2013, 52, 14224–14228.CrossRefGoogle Scholar
  23. [23]
    Zhang, Y. X.; Chen, C. L.; Peng, L. X.; Ma, Z. S.; Zhang, Y. J.; Xia, H. H.; Yang, A. L.; Wang, L.; Su, D. S.; Zhang, J. Carboxyl groups trigger the activity of carbon nanotube catalysts for the oxygen reduction reaction and agar conversion. Nano Res. 2015, 8, 502–511.CrossRefGoogle Scholar
  24. [24]
    Li, C.; Zhao, A. Q.; Xia, W.; Liang, C. H.; Muhler, M. Quantitative studies on the oxygen and nitrogen functionalization of carbon nanotubes performed in the gas phase. J. Phys. Chem. C 2012, 116, 20930–20936.CrossRefGoogle Scholar
  25. [25]
    Jia, H. P.; Dreyer, D. R.; Bielawski, C. W. Graphite oxide as an auto-tandem oxidation–hydration–aldol coupling catalyst. Adv. Synth. Catal. 2011, 353, 528–532.CrossRefGoogle Scholar
  26. [26]
    Verma, S.; Mungse, H. P.; Kumar, N.; Choudhary, S.; Jain, S. L.; Sain, B.; Khatri, O. P. Graphene oxide: An efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 2011, 47, 12673–12675.CrossRefGoogle Scholar
  27. [27]
    Hu, F.; Patel, M.; Luo, F. X.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H. X.; Szostak, M. Graphene-catalyzed direct friedel–crafts alkylation reactions: Mechanism, selectivity, and synthetic utility. J. Am. Chem. Soc. 2015, 137, 14473–14480.CrossRefGoogle Scholar
  28. [28]
    Chung, P. W.; Charmot, A.; Olatunji Ojo, O. A.; Durkin, K. A.; Katz, A. Hydrolysis catalysis of miscanthus xylan to xylose usingweak-acid surface sites. ACS Catal. 2014, 4, 302–310.CrossRefGoogle Scholar
  29. [29]
    Charmot, A.; Chung, P. W.; Katz, A. Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on postsynthetically modified carbon. ACS SustainableChem. Eng. 2014, 2, 2866–2872.CrossRefGoogle Scholar
  30. [30]
    Chung, P. W.; Charmot, A.; Gazit, O. M.; Katz, A. Glucan adsorption on mesoporous carbon nanoparticles: Effect of chain length and internal surface. Langmuir 2012, 28, 15222–15232.CrossRefGoogle Scholar
  31. [31]
    Dhakshinamoorthy, A.; Alvaro, M.; Concepcion, P.; Fornes, V.; Garcia, H. Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem. Commun. 2012, 48, 5443–5445.CrossRefGoogle Scholar
  32. [32]
    Qi, X. H.; Guo, H. X.; Li, L. Y.; Smith, R. L. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem 2012, 5, 2215–2220.CrossRefGoogle Scholar
  33. [33]
    Babou, F.; Coudurier, G.; Védrine, J. C. Acidic properties of sulfated zirconia: An infrared spectroscopic study. J. Catal. 1995, 152, 341–349.CrossRefGoogle Scholar
  34. [34]
    Thibault Starzyk, F.; Travert, A.; Saussey, J.; Lavalley, J. C. Correlation between activity and acidity on zeolites: A high temperature infrared study of adsorbed acetonitrile. Top. Catal. 1998, 6, 111–118.CrossRefGoogle Scholar
  35. [35]
    Védrine, J. C. Acid-base characterization of heterogeneous catalysts: An up-to-date overview. Res. Chem. Intermediat. 2015, 41, 9387–9423.CrossRefGoogle Scholar
  36. [36]
    Hammett, L. P.; Deyrup, A. J. A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. Soc. 1932, 54, 2721–2739.CrossRefGoogle Scholar
  37. [37]
    Benesi, H. A. Acidity of catalyst surfaces. II. Amine titration using Hammett indicators. J. Phys. Chem. 1957, 61, 970–973.Google Scholar
  38. [38]
    Paul, M. A.; Long, F. A. H0 and related indicator acidity function. Chem. Rev. 1957, 57, 1–45.CrossRefGoogle Scholar
  39. [39]
    Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Metal–organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides. Chem.—Eur. J. 2010, 16, 8530–8536.CrossRefGoogle Scholar
  40. [40]
    Su, C. L.; Acik, M.; Takai, K.; Lu, J.; Hao, S. J.; Zheng, Y.; Wu, P. P.; Bao, Q. L.; Enoki, T.; Chabal, Y. J. et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun. 2012, 3, 1298.CrossRefGoogle Scholar
  41. [41]
    Wang, Z. W.; Shirley, M. D.; Meikle, S. T.; Whitby, R. L. D.; Mikhalovsky, S. V. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in situ generated fulvic acids on their stability in aqueous dispersions. Carbon 2009, 47, 73–79.CrossRefGoogle Scholar
  42. [42]
    Fogden, S.; Verdejo, R.; Cottam, B.; Shaffer, M. Purification of single walled carbon nanotubes: The problem with oxidation debris. Chem. Phys. Lett. 2008, 460, 162–167.CrossRefGoogle Scholar
  43. [43]
    Rinaldi, A.; Frank, B.; Su, D. S.; Hamid, S. B. A.; Schlögl, R. Facile removal of amorphous carbon from carbon nanotubes by sonication. Chem. Mater. 2011, 23, 926–928.CrossRefGoogle Scholar
  44. [44]
    Braude, E. A.; Nachod, F. C. Determination of Organic Structures by Physical Methods; Academic Press: New York, 1955.Google Scholar
  45. [45]
    Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 7132–7135.CrossRefGoogle Scholar
  46. [46]
    Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201–1204.CrossRefGoogle Scholar
  47. [47]
    Li, B.; Su, D. S. The nucleophilicity of the oxygen functional groups on carbon materials: A DFT analysis. Chem.—Eur. J. 2014, 20, 7890–7894.CrossRefGoogle Scholar
  48. [48]
    Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.CrossRefGoogle Scholar
  49. [49]
    Mao, S. J.; Sun, X. Y.; Li, B.; Su, D. S. Rationale of the effects from dopants on C–H bond activation for sp2 hybridized nanostructured carbon catalysts. Nanoscale 2015, 7, 16597–16600.CrossRefGoogle Scholar
  50. [50]
    Wang, C. M.; Brogaard, R. Y.; Weckhuysen, B. M.; Nørskov, J. K.; Studt, F. Reactivity descriptor in solid acid catalysis: Predicting turnover frequencies for propene methylation in zeotypes. J. Phys. Chem. Lett. 2014, 5, 1516–1521.CrossRefGoogle Scholar
  51. [51]
    Brogaard, R. Y.; Wang, C. M.; Studt, F. Methanol–alkene reactions in zeotype acid catalysts: Insights from a descriptorbased approach and microkinetic modeling. ACS Catal. 2014, 4, 4504–4509.CrossRefGoogle Scholar
  52. [52]
    Bligaard, T.; Honkala, K.; Logadottir, A.; Nørskov, J. K.; Dahl, S.; Jacobsen, C. J. H. On the compensation effect in heterogeneous catalysis. J. Phys. Chem. B 2003, 107, 9325–9331.CrossRefGoogle Scholar
  53. [53]
    Teschner, D.; Novell Leruth, G.; Farra, R.; Knop Gericke, A.; Schlögl, R.; Szentmiklósi, L.; Hevia, M. G.; Soerijanto, H.; Schomäcker, R.; Pérez Ramírez, J. et al. In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nat. Chem. 2012, 4, 739–745.CrossRefGoogle Scholar
  54. [54]
    Kwon, S.; Schweitzer, N. M.; Park, S.; Stair, P. C.; Snurr, R. Q. A kinetic study of vapor-phase cyclohexene epoxidation by H2O2 over mesoporous TS-1. J. Catal. 2015, 326, 107–115.CrossRefGoogle Scholar
  55. [55]
    Chen, C. L.; Zhang, J.; Zhang, B. S.; Yu, C. L.; Peng, F.; Su, D. S. Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane. Chem. Commun. 2013, 49, 8151–8153.CrossRefGoogle Scholar
  56. [56]
    Kozuch, S.; Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 2011, 44, 101–110.CrossRefGoogle Scholar
  57. [57]
    Aryafar, M.; Zaera, F. Kinetic study of the catalytic oxidation of alkanes over nickel, palladium, and platinum foils. Catal. Lett. 1997, 48, 173–183.CrossRefGoogle Scholar
  58. [58]
    Hansen, N.; Heyden, A.; Bell, A. T.; Keil, F. J. Microkinetic modeling of nitrous oxide decomposition on dinuclear oxygen bridged iron sites in Fe-ZSM-5. J. Catal. 2007, 248, 213–225.CrossRefGoogle Scholar
  59. [59]
    Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Lowtemperature oxidation of CO catalysed by Co3O4nanorods. Nature 2009, 458, 746–749.CrossRefGoogle Scholar
  60. [60]
    Collier, V. E.; Ellebracht, N. C.; Lindy, G. I.; Moschetta, E. G.; Jones, C. W. Kinetic and mechanistic examination of acid-basebifunctionalaminosilica catalysts in aldol and nitroaldol condensations. ACS Catal. 2016, 6, 460–468.CrossRefGoogle Scholar
  61. [61]
    Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M. Characterization of active sites on carbon catalysts. Ind. Eng. Chem. Res. 2007, 46, 4110–4115.CrossRefGoogle Scholar
  62. [62]
    Zielke, U.; Hü ttinger, K. J.; Hoffman, W. P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 1996, 34, 983–998.Google Scholar
  63. [63]
    Nishimura, T.; Das, P. R.; Meisels, G. G. On the dissociation dynamics of energy-selected nitrobenzene ion. J. Chem. Phys. 1986, 84, 6190–6199.CrossRefGoogle Scholar
  64. [64]
    Beynon, J. H.; Bertrand, M.; Cooks, R. G. Metastable loss of nitrosyl radical from aromatic nitro compounds. J. Am. Chem. Soc. 1973, 95, 1739–1745.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyBerlinGermany

Personalised recommendations